RNA-Seq-Based Comparative Transcriptomics: RNA Preparation and Bioinformatics

  • Antonio Rodríguez-García
  • Alberto Sola-Landa
  • Carlos Barreiro
Part of the Methods in Molecular Biology book series (MIMB, volume 1645)


The major transcriptome analysis is the determination of differentially expressed genes across experimental conditions. For this, the next-generation sequencing of RNA (RNA-seq) is an increasingly cost-effective technology for the analysis of transcriptomes with several advantages over gene expression microarrays, such as its higher sensitivity and accuracy, broader dynamic range, and the ability to detect novel transcripts, including noncoding RNA molecules, at nucleotide-level resolution. Although these advantages, many microbiology laboratories have not yet applied RNA-seq analyses to their investigations. The high cost of the equipment for next-generation sequencing is no longer an issue, since this intermediate part of the analysis can be provided by commercial or central services. Here, we detail a protocol for the first part of the analysis, the RNA extraction, and an introductory protocol to the bioinformatics analysis of the sequencing data that generates the differential expression results.

Key words

Mycobacterium B-3805 Next-generation sequencing RNA extraction Transcriptomics RNA-seq Bioconductor Differential expression 



This work was supported by a grant of the European Union program ERA-IB [MySterI (EIB.12.010)] through the APCIN call of the Spanish Ministry of Economy and Competitiveness (MINECO, Spain) (PCIN-2013-024-C02-01). The authors want to thank the European Union program ERA-IB; the Spanish Ministry of Economy and Competitiveness (MINECO, Spain) and the MySterI Consortium (INBIOTEC, Pharmins Ltd., University of York, SINTEF, Technische Universität Dortmund and Gadea Biopharma S.L.). We thank J. Merino, B. Martín, and A. Casenave for their excellent technical assistance and the degree students of the group A. Morales and P. González.


  1. 1.
    Ozsolak F, Platt AR, Jones DR et al (2009) Direct RNA sequencing. Nature 461:814–818CrossRefPubMedGoogle Scholar
  2. 2.
    Hrdlickova R, Toloue M, Tian B (2016) RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA. doi: 10.1002/wrna.1364 PubMedGoogle Scholar
  3. 3.
    Creecy JP, Conway T (2015) Quantitative bacterial transcriptomics with RNA-seq. Curr Opin Microbiol 23:133–140CrossRefPubMedGoogle Scholar
  4. 4.
    Croucher NJ, Thomson NR (2010) Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13:619–624CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhao S, Fung-Leung WP, Bittner A et al (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One 9:e78644CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yoder-Himes DR, Chain PSG, Zhu Y et al (2009) Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci U S A 106:3976–3981CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mizuno T, Chou MY, Inouye M (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci U S A 81:1966–1970CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Valentin-Hansen P, Eriksen M, Udesen C (2004) The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol 51:1525–1533CrossRefPubMedGoogle Scholar
  10. 10.
    de Lay N, Schu DJ, Gottesman S (2013) Bacterial small RNA-based negative regulation: Hfq and its accomplices. J Biol Chem 288:7996–8003CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Miyakoshi M, Chao Y, Vogel J (2015) Regulatory small RNAs from the 3′ regions of bacterial mRNAs. Curr Opin Microbiol 24:132–139CrossRefPubMedGoogle Scholar
  12. 12.
    Chao Y, Papenfort K, Reinhardt R et al (2012) An atlas of Hfq-bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs. EMBO J 31:4005–4019CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Miyakoshi M, Chao Y, Vogel J (2015) Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA. EMBO J 34:1478–1492CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Feng L, Rutherford ST, Papenfort K et al (2015) A Qrr noncoding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics. Cell 160:228–240CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Papenfort K, Sun Y, Miyakoshi M et al (2013) Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell 153:426–437CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sharma CM, Hoffmann S, Darfeuille F et al (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255CrossRefPubMedGoogle Scholar
  17. 17.
    Sharma CM, Vogel J (2014) Differential RNA-seq: the approach behind and the biological insight gained. Curr Opin Microbiol 19:97–105CrossRefPubMedGoogle Scholar
  18. 18.
    Conway T, Creecy JP, Maddox SM et al (2014) Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing. MBio 5:e01442–e01414CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Marbaniang CN, Vogel J (2016) Emerging roles of RNA modifications in bacteria. Curr Opin Microbiol 30:50–57CrossRefPubMedGoogle Scholar
  20. 20.
    Bashiardes S, Zilberman-Schapira G, Elinav E (2016) Use of metatranscriptomics in microbiome research. Bioinform Biol Insights 10:19–25PubMedPubMedCentralGoogle Scholar
  21. 21.
    Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Li H (2011) Improving SNP discovery by base alignment quality. Bioinformatics 27:1157–1158CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lei R, Ye K, Gu Z et al (2015) Diminishing returns in next-generation sequencing (NGS) transcriptome data. Gene 557:82–87CrossRefPubMedGoogle Scholar
  25. 25.
    Rodríguez-García A, Fernández-Alegre E, Morales A et al (2016) Complete genome sequence of ‘Mycobacterium neoaurum’ NRRL B-3805, an androstenedione (AD) producer for industrial biotransformation of sterols. J Biotechnol 224:64–65CrossRefPubMedGoogle Scholar
  26. 26.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Seyednasrollah F, Laiho A, Elo LL (2015) Comparison of software packages for detecting differential expression in RNA-seq studies. Brief Bioinform 16:59–70CrossRefPubMedGoogle Scholar
  28. 28.
    Nagalakshmi U, Wang Z, Waern K et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wilhelm BT, Marguerat S, Watt S et al (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Antonio Rodríguez-García
    • 1
    • 3
  • Alberto Sola-Landa
    • 1
  • Carlos Barreiro
    • 1
    • 2
  1. 1.Instituto de Biotecnología de León (INBIOTEC)Parque Científico de LeónLeónSpain
  2. 2.Área de Microbiología, Departamento de Biología Molecular, Campus de PonferradaUniversidad de LeónPonferradaSpain
  3. 3.Área de Microbiología, Departamento de Biología Molecular, Campus de PonferradaUniversidad de LeónLeónSpain

Personalised recommendations