Methods for Posttranslational Induction of Polyreactivity of Antibodies

  • Maxime Lecerf
  • Annaelle Jarossay
  • Srinivas V. Kaveri
  • Sébastien Lacroix-Desmazes
  • Jordan D. DimitrovEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1643)


An antibody molecule that recognizes multiple unrelated antigens is defined as polyreactive. Polyreactivity is an intrinsic characteristic of immune repertoires. Degenerated antigen binding diversifies the repertoire of specificities, thus contributing to immune defense and immune regulation. Immune repertoire contains also a fraction of immunoglobulins, which acquire polyreactivity only following contact with various protein-destabilizing or pro-oxidative substances. Posttranslational induction of the antibody polyreactivity may have important repercussion for laboratory practice, as well as in cases of pathological conditions accompanied by liberation of large quantities of pro-oxidative substances such as heme, labile iron, or reactive oxygen species. Antibodies with induced polyreactivity have been demonstrated to exert pathogen neutralization and immune regulatory potential in inflammatory conditions, suggesting that this phenomenon may be exploited for design of therapeutic strategies. In this article, we provide description of the basic procedures for uncovering of the cryptic polyreactivity of antibodies by heme, ferrous ions, and acid pH solution.

Key words

Immunoglobulins Natural antibodies IgG Antibody polyreactivity Cryptic antigenic specificities Heme Iron ions Acidic pH 



This work was supported by INSERM (France) and by grant from Agence Nationale de la Recherche (ANR-13-JCV1-006-01).


  1. 1.
    Notkins AL (2004) Polyreactivity of antibody molecules. Trends Immunol 25:174–179CrossRefPubMedGoogle Scholar
  2. 2.
    Coutinho A, Kazatchkine MD, Avrameas S (1995) Natural autoantibodies. Curr Opin Immunol 7:812–818CrossRefPubMedGoogle Scholar
  3. 3.
    Lacroix-Desmazes S, Kaveri SV, Mouthon L, Ayouba A, Malanchere E, Coutinho A, Kazatchkine MD (1998) Self-reactive antibodies (natural autoantibodies) in healthy individuals. J Immunol Methods 216:117–137CrossRefPubMedGoogle Scholar
  4. 4.
    Dimitrov JD, Planchais C, Roumenina LT, Vassilev TL, Kaveri SV, Lacroix-Desmazes S (2013) Antibody polyreactivity in health and disease: statu variabilis. J Immunol 191:993–999CrossRefPubMedGoogle Scholar
  5. 5.
    Saenko VA, Kabakov AE, Poverenny AM (1992) Hidden high-avidity anti-DNA antibodies occur in normal human gammaglobulin preparations. Immunol Letters 34:1–5CrossRefGoogle Scholar
  6. 6.
    Cabiedes J, Cabral AR, Alarcon-Segovia D (1998) Hidden anti-phospholipid antibodies in normal human sera circulate as immune complexes whose antigen can be removed by heat, acid, hypermolar buffers or phospholipase treatments. Eur J Immunol 28:2108–2114CrossRefPubMedGoogle Scholar
  7. 7.
    Mcmahon MJ, O'kennedy R (2000) Polyreactivity as an acquired artefact, rather than a physiologic property, of antibodies: evidence that monoreactive antibodies may gain the ability to bind to multiple antigens after exposure to low pH. J Immunol Methods 241:1–10CrossRefPubMedGoogle Scholar
  8. 8.
    Bouvet JP, Stahl D, Rose S, Quan CP, Kazatchkine MD, Kaveri SV (2001) Induction of natural autoantibody activity following treatment of human immunoglobulin with dissociating agents. J Autoimmun 16:163–172CrossRefPubMedGoogle Scholar
  9. 9.
    Dimitrov JD, Lacroix-Desmazes S, Kaveri SV, Vassilev TL (2007) Transition towards antigen-binding promiscuity of a monospecific antibody. Mol Immunol 44:1854–1863CrossRefPubMedGoogle Scholar
  10. 10.
    Cheng HM, Chamley L (2008) Cryptic natural autoantibodies and co-potentiators. Autoimmun Rev 7:431–434CrossRefPubMedGoogle Scholar
  11. 11.
    Djoumerska I, Tchorbanov A, Pashov A, Vassilev T (2005) The autoreactivity of therapeutic intravenous immunoglobulin (IVIG) preparations depends on the fractionation methods used. Scand J Immunol 61:357–363CrossRefPubMedGoogle Scholar
  12. 12.
    Djoumerska-Alexieva IK, Dimitrov JD, Voynova EN, Lacroix-Desmazes S, Kaveri SV, Vassilev TL (2010) Exposure of IgG to an acidic environment results in molecular modifications and in enhanced protective activity in sepsis. FEBS J 277:3039–3050CrossRefPubMedGoogle Scholar
  13. 13.
    Berneman A, Guilbert B, Eschrich S, Avrameas S (1993) IgG auto- and polyreactivities of normal human sera. Mol Immunol 30:1499–1510CrossRefPubMedGoogle Scholar
  14. 14.
    Mouthon L, Haury M, Lacroix-Desmazes S, Barreau C, Coutinho A, Kazatchkine MD (1995) Analysis of the normal human IgG antibody repertoire. Evidence that IgG autoantibodies of healthy adults recognize a limited and conserved set of protein antigens in homologous tissues. J Immunol 154:5769–5778PubMedGoogle Scholar
  15. 15.
    Lacroix-Desmazes S, Mouthon L, Kaveri SV, Kazatchkine MD, Weksler ME (1999) Stability of natural self-reactive antibody repertoires during aging. J Clin Immunol 19:26–34CrossRefPubMedGoogle Scholar
  16. 16.
    Bussone G, Dib H, Dimitrov JD, Camoin L, Broussard C, Tamas N, Guillevin L, Kaveri SV, Mouthon L (2009) Identification of target antigens of self-reactive IgG in intravenous immunoglobulin preparations. Proteomics 9:2253–2262CrossRefPubMedGoogle Scholar
  17. 17.
    Mcintyre JA, Wagenknecht DR, Faulk WP (2005) Autoantibodies unmasked by redox reactions. J Autoimmun 24:311–317CrossRefPubMedGoogle Scholar
  18. 18.
    Dimitrov JD, Ivanovska ND, Lacroix-Desmazes S, Doltchinkova VR, Kaveri SV, Vassilev TL (2006) Ferrous ions and reactive oxygen species increase antigen-binding and anti-inflammatory activities of immunoglobulin G. J Biol Chem 281:439–446CrossRefPubMedGoogle Scholar
  19. 19.
    Dimitrov JD, Roumenina LT, Doltchinkova VR, Vassilev TL (2007) Iron ions and haeme modulate the binding properties of complement subcomponent C1q and of immunoglobulins. Scand J Immunol 65:230–239CrossRefPubMedGoogle Scholar
  20. 20.
    Dimitrov JD, Roumenina LT, Doltchinkova VR, Mihaylova NM, Lacroix-Desmazes S, Kaveri SV, Vassilev TL (2007) Antibodies use heme as a cofactor to extend their pathogen elimination activity and to acquire new effector functions. J Biol Chem 282:26696–26706CrossRefPubMedGoogle Scholar
  21. 21.
    Omersel J, Jurgec I, Cucnik S, Kveder T, Rozman B, Sodin-Semrl S, Bozic B (2008) Autoimmune and proinflammatory activity of oxidized immunoglobulins. Autoimmun Rev 7:523–529CrossRefPubMedGoogle Scholar
  22. 22.
    Mcintyre JA, Faulk WP (2009) Redox-reactive autoantibodies: biochemistry, characterization, and specificities. Clin Rev Allergy Immunol 37:49–54CrossRefPubMedGoogle Scholar
  23. 23.
    Mihaylova NM, Dimitrov JD, Djoumerska-Alexieva IK, Vassilev TL (2008) Inflammation-induced enhancement of IgG immunoreactivity. Inflamm Res 57:1–3CrossRefPubMedGoogle Scholar
  24. 24.
    Roumenina LT, Rayes J, Lacroix-Desmazes S, Dimitrov JD (2016) Heme: modulator of plasma systems in hemolytic diseases. Trends Mol Med 22:200–213CrossRefPubMedGoogle Scholar
  25. 25.
    Dimitrov JD, Planchais C, Kang J, Pashov A, Vassilev TL, Kaveri SV, Lacroix-Desmazes S (2010) Heterogeneous antigen recognition behavior of induced polyspecific antibodies. Biochem Biophys Res Commun 398:266–271CrossRefPubMedGoogle Scholar
  26. 26.
    Dimitrov JD, Planchais C, Scheel T, Ohayon D, Mesnage S, Berek C, Kaveri SV, Lacroix-Desmazes S (2014) A cryptic polyreactive antibody recognizes distinct clades of HIV-1 glycoprotein 120 by an identical binding mechanism. J Biol Chem 289:17767–17779CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hadzhieva M, Vassilev TL, Roumenina LT, Bayry J, Kaveri SV, Lacroix-Desmazes S, Dimitrov JD (2015) Mechanism and functional implications of the heme-induced binding promiscuity of IgE. Biochemistry 54:2061–2072CrossRefPubMedGoogle Scholar
  28. 28.
    Lecerf M, Scheel T, Pashov AD et al (2015) Prevalence and gene characteristics of antibodies with cofactor-induced HIV-1 specificity. J Biol Chem 290:5203–5213CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pavlovic S, Zdravkovic N, Dimitrov JD, Djukic A, Arsenijevic N, Vassilev TL, Lukic ML (2011) Intravenous immunoglobulins exposed to heme (heme IVIG) are more efficient than IVIG in attenuating autoimmune diabetes. Clin Immunol 138:162–171CrossRefPubMedGoogle Scholar
  30. 30.
    Djoumerska-Alexieva I, Roumenina L, Pashov A et al (2015) Intravenous immunoglobulin with enhanced polyspecificity improves survival in experimental sepsis and aseptic systemic inflammatory response syndromes. Mol Med 21:1002CrossRefGoogle Scholar
  31. 31.
    Gupta N, De Wispelaere M, Lecerf M et al (2015) Neutralization of Japanese encephalitis virus by heme-induced broadly reactive human monoclonal antibody. Sci Rep 5:16248CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Maxime Lecerf
    • 1
    • 2
    • 3
  • Annaelle Jarossay
    • 1
    • 2
    • 3
  • Srinivas V. Kaveri
    • 1
    • 2
    • 3
  • Sébastien Lacroix-Desmazes
    • 1
    • 2
    • 3
  • Jordan D. Dimitrov
    • 1
    • 2
    • 3
    Email author
  1. 1.Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138Centre de Recherche des CordeliersParisFrance
  2. 2.INSERM, UMR_S 1138Centre de Recherche des CordeliersParisFrance
  3. 3.Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138Centre de Recherche des CordeliersParisFrance

Personalised recommendations