Phosphoproteomic Analysis of Isolated Mitochondria in Yeast

  • Margaux Renvoisé
  • Ludovic Bonhomme
  • Marlène Davanture
  • Michel Zivy
  • Claire LemaireEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1636)


Mitochondria play a central role in cellular energy metabolism and cell death. Deregulation of mitochondrial functions is associated with several human pathologies (neurodegenerative diseases, neuromuscular diseases, type II diabetes, obesity, cancer). The steadily increasing number of identified mitochondrial phosphoproteins, kinases, and phosphatases in recent years suggests that reversible protein phosphorylation plays an important part in the control of mitochondrial processes. In addition, many mitochondrial phosphoproteins probably still remain to be identified, considering that 30% of proteins are expected to be phosphorylated in eukaryotes. In this chapter, we describe two procedures for the analysis of the mitochondrial phosphoproteome. The first one is a qualitative method that combines blue native and sodium dodecyl sulfate–polyacrylamide gel electrophoresis (2D-BN/SDS-PAGE) and specific phosphoprotein staining. The second one is a quantitative approach that associates mitochondrial peptide labeling, phosphopeptide enrichment, and mass spectrometry.

Key words

Saccharomyces cerevisiae Mitochondria Phosphoproteome 


  1. 1.
    Hunter T (1995) Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation and signaling. Cell 80:225–236CrossRefPubMedGoogle Scholar
  2. 2.
    Schulze WX, Schneider T, Starck S, Martinoia E, Trentmann O (2012) Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. Plant J 69:529–541CrossRefPubMedGoogle Scholar
  3. 3.
    Bonhomme L, Valot B, Tardieu F, Zivy M (2012) Phosphoproteome dynamics upon changes in plant water status reveal early events associated with rapid growth adjustment in maize leaves. Mol Cell Proteomics 11:957–972CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tyanova S, Cox J, Olsen J, Mann M, Frishman D (2013) Phosphorylation variation during the cell cycle scales with structural propensities of proteins. PLoS Comput Biol 9:e1002842CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Oliveira AP, Ludwig C, Picotti P, Kogadeeva M, Aebersold R, Sauer U (2012) Regulation of yeast central metabolism by enzyme phosphorylation. Mol Syst Biol 8:623CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hofer A, Wenz T (2014) Post-translational modification of mitochondria as a novel mode of regulation. Exp Gerontol 56:202–220CrossRefPubMedGoogle Scholar
  7. 7.
    Amoutzias GD, He Y, Lilley KS, Van de Peer Y, Oliver SG (2012) Evaluation and properties of the budding yeast phosphoproteome. Mol Cell Proteomics 11:M111.009555CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Phillips D, Hopper RK, Johnson DT, Harris RA, Blinova K, Boja ES, French S, Balaban RS (2009) Use of (32) P to study dynamics of the mitochondrial phosphoproteome. J Proteome Res 8:2679–2695CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schulenberg B, Aggeler R, Beechem JM, Capaldi RA, Patton WF (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J Biol Chem 278:27251–27255CrossRefPubMedGoogle Scholar
  10. 10.
    Lee J, Xu Y, Chen Y, Sprung R, Kim SC, Xie S, Zhao Y (2007) Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS. Mol Cell Proteomics 6:669–676CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Beckers GJ, Hoehenwarter W, Röhrig H, Conrath U, Weckwerth W (2012) Tandem metal-oxide affinity chromatography for enhanced depth of phosphoproteome analysis. J Proteome 75:4602–4609CrossRefGoogle Scholar
  12. 12.
    Zarei M, Sprenger A, Metzger F, Gretzmeier C, Dengjel J (2011) Comparison of ERLIC-TiO2, HILIC-TiO2, and SCX-TiO2 for global phosphoproteomics approaches. J Proteome Res 10:3474–3483CrossRefPubMedGoogle Scholar
  13. 13.
    Lind SB, Artemenko KA, Pettersson U (2012) A strategy for identification of protein tyrosine phosphorylation. Methods 56:275–283CrossRefPubMedGoogle Scholar
  14. 14.
    Besant PG, Attwood PV (2009) Detection and analysis of protein histidine phosphorylation. Mol Cell Biochem 329:93–106CrossRefPubMedGoogle Scholar
  15. 15.
    Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386CrossRefPubMedGoogle Scholar
  16. 16.
    Boja ES, Phillips D, French SA, Harris RA, Balaban RS (2009) Quantitative mitochondrial phosphoproteomics using iTRAQ on an LTQ-Orbitrap with high energy collision dissociation. J Proteome Res 8:4665–4675CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJR (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4:484–494CrossRefPubMedGoogle Scholar
  18. 18.
    Lam MP, Scruggs SB, Kim TY, Zong C, Lau E, Ryan CM, Faull KF, Ping P (2014) An MRM-based workflow for quantifying cardiac mitochondrial protein phosphorylation in murine and human tissue. Methods Mol Biol 1072:621–632CrossRefGoogle Scholar
  19. 19.
    Renvoisé M, Bonhomme L, Davanture M, Valot B, Zivy M, Lemaire C (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. J Proteome 106:140–150CrossRefGoogle Scholar
  20. 20.
    Meisinger C, Sommer T, Pfanner N (2000) Purification of Saccharomyces cerevisiae mitochondria devoid of microsomal and cytosolic contaminations. Anal Biochem 287:339–342CrossRefPubMedGoogle Scholar
  21. 21.
    Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231CrossRefPubMedGoogle Scholar
  22. 22.
    Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467CrossRefPubMedGoogle Scholar
  23. 23.
    Valot B, Langella O, Nano E, Zivy M (2011) MassChroQ: a versatile tool for mass spectrometry quantification. Proteomics 11:3572–3577CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Margaux Renvoisé
    • 1
  • Ludovic Bonhomme
    • 2
  • Marlène Davanture
    • 3
  • Michel Zivy
    • 3
  • Claire Lemaire
    • 1
    Email author
  1. 1.UMR 9198 CNRS, Institute for Integrative Biology of the Cell (I2BC), B3S, LPSM—CEA SaclayGif-sur-Yvette cedexFrance
  2. 2.INRA/UCA UMR 1095 GDEC ‘Génétique, Diversité et Ecophysiologie des Céréales’Clermont-FerrandFrance
  3. 3.GQE– Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, UniversitÕ Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations