Skip to main content

Characterization of the Phospho-Adhesome by Mass Spectrometry-Based Proteomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1636))

Abstract

Integrin adhesion receptors engage with their extracellular matrix (ECM) ligands, initiating intracellular signaling pathways that regulate a range of fundamental cell functions. Protein kinases and phosphatases play an integral role in integrin adhesion-mediated signaling. However, until recently, knowledge of the phosphorylation sites regulated downstream of integrin ligation was limited to candidate-based approaches and did not support a system-level understanding of the molecular mechanisms through which ECM engagement influences cell behavior. Here, we describe a mass spectrometry (MS)-based phosphoproteomic protocol that enables the global characterization of phosphorylation-based signaling networks activated by integrin-mediated adhesion. To analyze specifically integrin-proximal signaling, the phosphoproteomic workflow involves the affinity-based isolation and analysis of integrin-associated complexes (IACs) rather than proteins solubilized from whole-cell lysates , which are typically used for global phosphoproteomic studies. The detection of phosphorylation sites from IAC proteins was optimized at various stages of the workflow, including IAC isolation, proteolytic digestion, and MS-based data acquisition strategies. The protocol permits the identification and quantification of IAC components by both Western blotting and MS. Notably, compared to phosphoproteomic analyses of cell lysates, the workflow described here enables an improved detection of phosphorylation sites from well-defined IAC proteins, including many known components of the signaling pathways activated by adhesion to the ECM.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wehrle-Haller B (2012) Structure and function of focal adhesions. Curr Opin Cell Biol 24:116–124

    Article  CAS  PubMed  Google Scholar 

  2. Iwamoto DV, Calderwood DA (2015) Regulation of integrin-mediated adhesions. Curr Opin Cell Biol 36:41–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Case LB, Waterman CM (2015) Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat Cell Biol 17:955–963

    Article  CAS  PubMed  Google Scholar 

  4. Maartens AP, Brown NH (2015) Anchors and signals: the diverse roles of integrins in development. Curr Top Dev Biol 112:233–272

    Article  PubMed  Google Scholar 

  5. Wolfenson H, Lavelin I, Geiger B (2013) Dynamic regulation of the structure and functions of integrin adhesions. Dev Cell 24:447–458

    Article  CAS  PubMed  Google Scholar 

  6. Seguin L, Desgrosellier JS, Weis SM, Cheresh DA (2015) Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol 25:234–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Winograd-Katz SE, Fässler R, Geiger B, Legate KR (2014) The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 15:273–288

    Article  CAS  PubMed  Google Scholar 

  8. Zaidel-Bar R, Itzkovitz S, Ma’ayan A, Iyengar R, Geiger B (2007) Functional atlas of the integrin adhesome. Nat Cell Biol 9:858–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones MC, Humphries JD, Byron A, Millon-Frémillon A, Robertson J, Paul NR, Ng DHJ, Askari JA, Humphries MJ (2015) Isolation of integrin-based adhesion complexes. Curr Protoc Cell Biol 66:9.8.1–9.8.15

    Article  Google Scholar 

  10. Kuo J-C, Han X, Yates JR, Waterman CM (2012) Isolation of focal adhesion proteins for biochemical and proteomic analysis. Methods Mol Biol 757:297–323

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ajeian JN, Horton ER, Astudillo P, Byron A, Askari JA, Millon-Frémillon A, Knight D, Kimber SJ, Humphries MJ, Humphries JD (2015) Proteomic analysis of integrin-associated complexes from mesenchymal stem cells. Proteomics Clin Appl 10(1):51–57. doi:10.1002/prca.201500033

    Article  PubMed  PubMed Central  Google Scholar 

  12. Byron A, Humphries JD, Craig SE, Knight D, Humphries MJ (2012) Proteomic analysis of α4β1 integrin adhesion complexes reveals α-subunit-dependent protein recruitment. Proteomics 12:2107–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Byron A, Askari JA, Humphries JD, Jacquemet G, Koper EJ, Warwood S, Choi CK, Stroud MJ, Chen CS, Knight D, Humphries MJ (2015) A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting. Nat Commun 6:6135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Humphries JD, Byron A, Bass MD, Craig SE, Pinney JW, Knight D, Humphries MJ (2009) Proteomic analysis of integrin-associated complexes identifies RCC2 as a dual regulator of Rac1 and Arf6. Sci Signal 2:ra51

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schiller HB, Hermann M-R, Polleux J, Vignaud T, Zanivan S, Friedel CC, Sun Z, Raducanu A, Gottschalk K-E, Théry M, Mann M, Fässler R (2013) β1- and αv-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat Cell Biol 15:625–636

    Article  CAS  PubMed  Google Scholar 

  16. Ng DHJ, Humphries JD, Byron A, Millon-Frémillon A, Humphries MJ (2014) Microtubule-dependent modulation of adhesion complex composition. PLoS One 9:e115213

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kuo J-C, Han X, Hsiao C-T, Yates JR, Waterman CM (2011) Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-pix in negative regulation of focal adhesion maturation. Nat Cell Biol 13:383–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schiller HB, Friedel CC, Boulegue C, Fässler R (2011) Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins. EMBO Rep 12:259–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robertson J, Jacquemet G, Byron A, Jones MC, Warwood S, Selley JN, Knight D, Humphries JD, Humphries MJ (2015) Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat Commun 6:6265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Horton ER, Byron A, Askari JA, Ng DHJ, Millon-Frémillon A, Robertson J, Koper EJ, Paul NR, Warwood S, Knight D, Humphries JD, Humphries MJ (2015) Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat Cell Biol 17:1577–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Humphries JD, Paul NR, Humphries MJ, Morgan MR (2015) Emerging properties of adhesion complexes: what are they and what do they do? Trends Cell Biol 25:388–397

    Article  CAS  PubMed  Google Scholar 

  22. Horton ER, Astudillo P, Humphries MJ, Humphries JD (2016) Mechanosensitivity of integrin adhesion complexes: role of the consensus adhesome. Exp Cell Res. doi:10.1016/j.yexcr.2015.10.025. [Epub ahead of print]

    PubMed  Google Scholar 

  23. Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat Rev Mol Cell Biol 2:793–805

    Article  CAS  PubMed  Google Scholar 

  24. Panetti TS (2002) Tyrosine phosphorylation of paxillin, FAK, and p130CAS: effects on cell spreading and migration. Front Biosci 7:d143–d150

    CAS  PubMed  Google Scholar 

  25. Kirchner J, Kam Z, Tzur G, Bershadsky AD, Geiger B (2003) Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption. J Cell Sci 116:975–986

    Article  CAS  PubMed  Google Scholar 

  26. Iyer VV, Ballestrem C, Kirchner J, Geiger B, Schaller MD (2005) Measurement of protein tyrosine phosphorylation in cell adhesion. Methods Mol Biol (Clifton, NJ) 294:289–302

    CAS  Google Scholar 

  27. Zaidel-Bar R, Ballestrem C, Kam Z, Geiger B (2003) Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J Cell Sci 116:4605–4613

    Article  CAS  PubMed  Google Scholar 

  28. Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49:199–221

    Article  CAS  PubMed  Google Scholar 

  29. Kanshin E, Michnick S, Thibault P (2012) Sample preparation and analytical strategies for large-scale phosphoproteomics experiments. Semin Cell Dev Biol 23:843–853

    Article  CAS  PubMed  Google Scholar 

  30. Byron A, Humphries JD, Bass MD, Knight D, Humphries MJ (2011) Proteomic analysis of integrin adhesion complexes. Sci Signal 4:pt2

    Article  PubMed  Google Scholar 

  31. Humphries MJ (1998) Cell-substrate adhesion assays. Curr Protoc Cell Biol 00:9.1.1–9.1.11. doi:10.1002/0471143030.cb0901s00

    Google Scholar 

  32. Beacham DA, Amatangelo MD, Cukierman E (2006) Preparation of extracellular matrices produced by cultured and primary fibroblasts. Curr Protoc Cell Biol 33:10.9.1–10.9.21

    Google Scholar 

  33. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  Google Scholar 

  34. Schroeder MJ, Shabanowitz J, Schwartz JC, Hunt DF, Coon JJ (2004) A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem 76:3590–3598

    Article  CAS  PubMed  Google Scholar 

  35. Savitski MM, Lemeer S, Boesche M, Lang M, Mathieson T, Bantscheff M, Kuster B (2011) Confident phosphorylation site localization using the Mascot Delta score. Mol Cell Proteomics 10:M110.003830

    Article  PubMed  Google Scholar 

  36. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT (1994) Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol 14:1680–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schaller MD, Parsons JT (1995) pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol 15:2635–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nojima Y, Morino N, Mimura T, Hamasaki K, Furuya H, Sakai R, Sato T, Tachibana K, Morimoto C, Yazaki Y, Hirai H (1995) Integrin-mediated cell adhesion promotes tyrosine phosphorylation of p130Cas, a Src homology 3-containing molecule having multiple Src homology 2-binding motifs. J Biol Chem 270:15398–15402

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Wellcome Trust (grant 092015 to M.J.H.), a Wellcome Trust Institutional Strategic Support Fund award (grant 097820 to the University of Manchester) and a Biotechnology and Biological Sciences Research Council studentship (to J.R.). The authors would also like to thank J.N. Selley for bioinformatic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Humphries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Robertson, J. et al. (2017). Characterization of the Phospho-Adhesome by Mass Spectrometry-Based Proteomics. In: Tan, AC., Huang, P. (eds) Kinase Signaling Networks. Methods in Molecular Biology, vol 1636. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7154-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7154-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7152-7

  • Online ISBN: 978-1-4939-7154-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics