Advertisement

Characterization of the Phospho-Adhesome by Mass Spectrometry-Based Proteomics

  • Joseph Robertson
  • Jonathan D. Humphries
  • Nikki R. Paul
  • Stacey Warwood
  • David Knight
  • Adam Byron
  • Martin J. HumphriesEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1636)

Abstract

Integrin adhesion receptors engage with their extracellular matrix (ECM) ligands, initiating intracellular signaling pathways that regulate a range of fundamental cell functions. Protein kinases and phosphatases play an integral role in integrin adhesion-mediated signaling. However, until recently, knowledge of the phosphorylation sites regulated downstream of integrin ligation was limited to candidate-based approaches and did not support a system-level understanding of the molecular mechanisms through which ECM engagement influences cell behavior. Here, we describe a mass spectrometry (MS)-based phosphoproteomic protocol that enables the global characterization of phosphorylation-based signaling networks activated by integrin-mediated adhesion. To analyze specifically integrin-proximal signaling, the phosphoproteomic workflow involves the affinity-based isolation and analysis of integrin-associated complexes (IACs) rather than proteins solubilized from whole-cell lysates , which are typically used for global phosphoproteomic studies. The detection of phosphorylation sites from IAC proteins was optimized at various stages of the workflow, including IAC isolation, proteolytic digestion, and MS-based data acquisition strategies. The protocol permits the identification and quantification of IAC components by both Western blotting and MS. Notably, compared to phosphoproteomic analyses of cell lysates, the workflow described here enables an improved detection of phosphorylation sites from well-defined IAC proteins, including many known components of the signaling pathways activated by adhesion to the ECM.

Key words

Adhesion complexes Affinity purification Cell adhesion Extracellular matrix Integrins Mass spectrometry Phosphoproteomics Phosphorylation Signaling Ventral membranes 

Notes

Acknowledgments

This work was supported by the Wellcome Trust (grant 092015 to M.J.H.), a Wellcome Trust Institutional Strategic Support Fund award (grant 097820 to the University of Manchester) and a Biotechnology and Biological Sciences Research Council studentship (to J.R.). The authors would also like to thank J.N. Selley for bioinformatic support.

References

  1. 1.
    Wehrle-Haller B (2012) Structure and function of focal adhesions. Curr Opin Cell Biol 24:116–124CrossRefPubMedGoogle Scholar
  2. 2.
    Iwamoto DV, Calderwood DA (2015) Regulation of integrin-mediated adhesions. Curr Opin Cell Biol 36:41–47CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Case LB, Waterman CM (2015) Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat Cell Biol 17:955–963CrossRefPubMedGoogle Scholar
  4. 4.
    Maartens AP, Brown NH (2015) Anchors and signals: the diverse roles of integrins in development. Curr Top Dev Biol 112:233–272CrossRefPubMedGoogle Scholar
  5. 5.
    Wolfenson H, Lavelin I, Geiger B (2013) Dynamic regulation of the structure and functions of integrin adhesions. Dev Cell 24:447–458CrossRefPubMedGoogle Scholar
  6. 6.
    Seguin L, Desgrosellier JS, Weis SM, Cheresh DA (2015) Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol 25:234–240CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Winograd-Katz SE, Fässler R, Geiger B, Legate KR (2014) The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 15:273–288CrossRefPubMedGoogle Scholar
  8. 8.
    Zaidel-Bar R, Itzkovitz S, Ma’ayan A, Iyengar R, Geiger B (2007) Functional atlas of the integrin adhesome. Nat Cell Biol 9:858–867CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jones MC, Humphries JD, Byron A, Millon-Frémillon A, Robertson J, Paul NR, Ng DHJ, Askari JA, Humphries MJ (2015) Isolation of integrin-based adhesion complexes. Curr Protoc Cell Biol 66:9.8.1–9.8.15CrossRefGoogle Scholar
  10. 10.
    Kuo J-C, Han X, Yates JR, Waterman CM (2012) Isolation of focal adhesion proteins for biochemical and proteomic analysis. Methods Mol Biol 757:297–323CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ajeian JN, Horton ER, Astudillo P, Byron A, Askari JA, Millon-Frémillon A, Knight D, Kimber SJ, Humphries MJ, Humphries JD (2015) Proteomic analysis of integrin-associated complexes from mesenchymal stem cells. Proteomics Clin Appl 10(1):51–57. doi: 10.1002/prca.201500033 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Byron A, Humphries JD, Craig SE, Knight D, Humphries MJ (2012) Proteomic analysis of α4β1 integrin adhesion complexes reveals α-subunit-dependent protein recruitment. Proteomics 12:2107–2114CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Byron A, Askari JA, Humphries JD, Jacquemet G, Koper EJ, Warwood S, Choi CK, Stroud MJ, Chen CS, Knight D, Humphries MJ (2015) A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting. Nat Commun 6:6135CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Humphries JD, Byron A, Bass MD, Craig SE, Pinney JW, Knight D, Humphries MJ (2009) Proteomic analysis of integrin-associated complexes identifies RCC2 as a dual regulator of Rac1 and Arf6. Sci Signal 2:ra51CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Schiller HB, Hermann M-R, Polleux J, Vignaud T, Zanivan S, Friedel CC, Sun Z, Raducanu A, Gottschalk K-E, Théry M, Mann M, Fässler R (2013) β1- and αv-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat Cell Biol 15:625–636CrossRefPubMedGoogle Scholar
  16. 16.
    Ng DHJ, Humphries JD, Byron A, Millon-Frémillon A, Humphries MJ (2014) Microtubule-dependent modulation of adhesion complex composition. PLoS One 9:e115213CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kuo J-C, Han X, Hsiao C-T, Yates JR, Waterman CM (2011) Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-pix in negative regulation of focal adhesion maturation. Nat Cell Biol 13:383–393CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schiller HB, Friedel CC, Boulegue C, Fässler R (2011) Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins. EMBO Rep 12:259–266CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Robertson J, Jacquemet G, Byron A, Jones MC, Warwood S, Selley JN, Knight D, Humphries JD, Humphries MJ (2015) Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat Commun 6:6265CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Horton ER, Byron A, Askari JA, Ng DHJ, Millon-Frémillon A, Robertson J, Koper EJ, Paul NR, Warwood S, Knight D, Humphries JD, Humphries MJ (2015) Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat Cell Biol 17:1577–1587CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Humphries JD, Paul NR, Humphries MJ, Morgan MR (2015) Emerging properties of adhesion complexes: what are they and what do they do? Trends Cell Biol 25:388–397CrossRefPubMedGoogle Scholar
  22. 22.
    Horton ER, Astudillo P, Humphries MJ, Humphries JD (2016) Mechanosensitivity of integrin adhesion complexes: role of the consensus adhesome. Exp Cell Res. doi: 10.1016/j.yexcr.2015.10.025. [Epub ahead of print]PubMedGoogle Scholar
  23. 23.
    Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat Rev Mol Cell Biol 2:793–805CrossRefPubMedGoogle Scholar
  24. 24.
    Panetti TS (2002) Tyrosine phosphorylation of paxillin, FAK, and p130CAS: effects on cell spreading and migration. Front Biosci 7:d143–d150PubMedGoogle Scholar
  25. 25.
    Kirchner J, Kam Z, Tzur G, Bershadsky AD, Geiger B (2003) Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption. J Cell Sci 116:975–986CrossRefPubMedGoogle Scholar
  26. 26.
    Iyer VV, Ballestrem C, Kirchner J, Geiger B, Schaller MD (2005) Measurement of protein tyrosine phosphorylation in cell adhesion. Methods Mol Biol (Clifton, NJ) 294:289–302Google Scholar
  27. 27.
    Zaidel-Bar R, Ballestrem C, Kam Z, Geiger B (2003) Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J Cell Sci 116:4605–4613CrossRefPubMedGoogle Scholar
  28. 28.
    Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49:199–221CrossRefPubMedGoogle Scholar
  29. 29.
    Kanshin E, Michnick S, Thibault P (2012) Sample preparation and analytical strategies for large-scale phosphoproteomics experiments. Semin Cell Dev Biol 23:843–853CrossRefPubMedGoogle Scholar
  30. 30.
    Byron A, Humphries JD, Bass MD, Knight D, Humphries MJ (2011) Proteomic analysis of integrin adhesion complexes. Sci Signal 4:pt2CrossRefPubMedGoogle Scholar
  31. 31.
    Humphries MJ (1998) Cell-substrate adhesion assays. Curr Protoc Cell Biol 00:9.1.1–9.1.11. doi: 10.1002/0471143030.cb0901s00 Google Scholar
  32. 32.
    Beacham DA, Amatangelo MD, Cukierman E (2006) Preparation of extracellular matrices produced by cultured and primary fibroblasts. Curr Protoc Cell Biol 33:10.9.1–10.9.21Google Scholar
  33. 33.
    Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860CrossRefGoogle Scholar
  34. 34.
    Schroeder MJ, Shabanowitz J, Schwartz JC, Hunt DF, Coon JJ (2004) A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem 76:3590–3598CrossRefPubMedGoogle Scholar
  35. 35.
    Savitski MM, Lemeer S, Boesche M, Lang M, Mathieson T, Bantscheff M, Kuster B (2011) Confident phosphorylation site localization using the Mascot Delta score. Mol Cell Proteomics 10:M110.003830CrossRefPubMedGoogle Scholar
  36. 36.
    Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT (1994) Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol 14:1680–1688CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Schaller MD, Parsons JT (1995) pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol Cell Biol 15:2635–2645CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nojima Y, Morino N, Mimura T, Hamasaki K, Furuya H, Sakai R, Sato T, Tachibana K, Morimoto C, Yazaki Y, Hirai H (1995) Integrin-mediated cell adhesion promotes tyrosine phosphorylation of p130Cas, a Src homology 3-containing molecule having multiple Src homology 2-binding motifs. J Biol Chem 270:15398–15402CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Joseph Robertson
    • 1
    • 2
  • Jonathan D. Humphries
    • 1
  • Nikki R. Paul
    • 1
    • 3
  • Stacey Warwood
    • 4
  • David Knight
    • 4
  • Adam Byron
    • 1
    • 5
  • Martin J. Humphries
    • 1
    Email author
  1. 1.Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life SciencesUniversity of ManchesterManchesterUK
  2. 2.Department of Molecular MicrobiologyOslo University HospitalOsloNorway
  3. 3.CRUK Beatson InstituteGlasgowUK
  4. 4.Biological Mass Spectrometry Core Facility, Faculty of Life SciencesUniversity of ManchesterManchesterUK
  5. 5.Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK

Personalised recommendations