Mass Spectrometry of Mitochondrial Membrane Protein Complexes

  • Luc Negroni
  • Michel Zivy
  • Claire LemaireEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1635)


The ATP production (oxidative phosphorylation) involves five complexes embedded in the inner membrane of mitochondria. The yeast Saccharomyces cerevisiae is mainly used as a model for the study of oxidative phosphorylation; mutants are easy to produce and are still viable due to their ability to grow using the fermentation pathway. Here, we present a process for analyzing mitochondrial respiratory complexes using native electrophoresis (BN-PAGE) coupled to LC-MS/MS. BN-PAGE (1) permits the separation of functional respiratory complexes, thus allowing in-gel activity detection of most of the respiratory complexes and (2) provides convenient samples for bottom-up proteomics. Combining BN-PAGE and LC-MS/MS leads to the identification of the subunit composition of membrane complexes and offers the possibility of highlighting potential interacting proteins.

Key words

S. cerevisiae Respiratory complexes OXPHOS BN-PAGE Mass spectrometry 



We gratefully acknowledge Alain Guillot for updates made to the technical points and for critical reading of the manuscript.


  1. 1.
    Sazanov LA (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 16:375–388CrossRefPubMedGoogle Scholar
  2. 2.
    Zeviani M, Di Donato S (2004) Mitochondrial disorders. Brain 127:2153–2172CrossRefPubMedGoogle Scholar
  3. 3.
    Marsy S, Frachon P, Dujardin G, Lombès A, Lemaire C (2008) Respiratory mutations lead to different pleiotropic effects on OXPHOS complexes in yeast and in human cells. FEBS Lett 582:3489–3493CrossRefPubMedGoogle Scholar
  4. 4.
    Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Schagger H (2001) Blue-native gels to isolate protein complexes from mitochondria. Methods Cell Biol 65:231–244CrossRefPubMedGoogle Scholar
  6. 6.
    Antonicka H, Ogilvie I, Taivassalo T, Anitori RP et al (2003) Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency. J Biol Chem 278:43081–43088CrossRefPubMedGoogle Scholar
  7. 7.
    Devreese B, Vanrobaeys F, Smet J, Van Beeumen J, Van Coster R (2002) Mass spectrometric identification of mitochondrial oxidative phosphorylation subunits separated by two-dimensional blue-native polyacrylamide gel electrophoresis. Electrophoresis 23:2525–2533CrossRefPubMedGoogle Scholar
  8. 8.
    Sickmann A, Reinders J, Wagner Y, Joppich C et al (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100:13207–13212CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sun G, Kinter MT, Anderson VE (2003) Mass spectrometric characterization of mitochondrial electron transport complexes: subunits of the rat heart ubiquinol-cytochrome c reductase. J Mass Spectrom 38:531–539CrossRefPubMedGoogle Scholar
  10. 10.
    Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, Wiley S, Murphy AN, Gaucher SP, Capaldi RA, Gibson BW, Ghosh SS (2003) Characterization of the human heart mitochondrial proteome. Nat Biotechnol 21:281–286CrossRefPubMedGoogle Scholar
  11. 11.
    Fandino AS, Rais I, Vollmer M, Elgass H et al (2005) LC-nanospray-MS/MS analysis of hydrophobic proteins from membrane protein complexes isolated by blue-native electrophoresis. J Mass Spectrom 40:1223–1231CrossRefPubMedGoogle Scholar
  12. 12.
    Pflieger D, Le Caer JP, Lemaire C, Bernard BA, Dujardin G, Rossier J (2002) Systematic identification of mitochondrial proteins by LC-MS/MS. Anal Chem 74:2400–2406CrossRefPubMedGoogle Scholar
  13. 13.
    Helbig AO, de Groot MJ, van Gestel RA, Mohammed S, de Hulster EA, Luttik MA, Daran-Lapujade P, Pronk JT, Heck AJ, Slijper M (2009) A three-way proteomics strategy allows differential analysis of yeast mitochondrial membrane protein complexes under anaerobic and aerobic conditions. Proteomics 9:4787–4798CrossRefPubMedGoogle Scholar
  14. 14.
    Mick DU, Dennerlein S, Wiese H, Reinhold R, Pacheu-Grau D, Lorenzi I, Sasarman F, Weraarpachai W, Shoubridge EA, Warscheid B, Rehling P (2012) MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell 151:1528–1541CrossRefPubMedGoogle Scholar
  15. 15.
    Bareth B, Dennerlein S, Mick DU, Nikolov M, Urlaub H, Rehling P (2013) The heme a synthase Cox15 associates with cytochrome c oxidase assembly intermediates during Cox1 maturation. Mol Cell Biol 33:4128–4137CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lemaire C, Dujardin G (2008) Preparation of respiratory chain complexes from Saccharomyces cerevisiae wild-type and mutant mitochondria : activity measurement and subunit composition analysis. Methods Mol Biol 432:65–81CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.CNRS-UMR5248Université de BordeauxBordeauxFrance
  2. 2.IGBMC, CNRS-UMR 7104IllkirchFrance
  3. 3.CNRS, PAPPSOUMR Génétique Quantitative et Evolution – Le MoulonGif-sur-YvetteFrance
  4. 4.CNRS-UMR9198, CEA-IBITECSUniversité Paris-Sud, I2BCGif-sur-YvetteFrance

Personalised recommendations