Single-Cell Mass Cytometry of Acute Myeloid Leukemia and Leukemia Stem/Progenitor Cells

  • Zhihong Zeng
  • Marina Konopleva
  • Michael AndreeffEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1633)


Mass cytometry time-of-flight (CyTOF) empowers us to understand acute myeloid leukemia (AML) biology at the single-cell level. This technology, combined with advanced data-analysis methods, enables identification and characterization of the rare AML stem/progenitor cells that play key roles in drug resistance and AML relapse. Here we provide a protocol for AML sample preparation for CyTOF and keynotes emphasizing critical steps in and troubleshooting strategies for this procedure.

Key words

Acute myeloid leukemia Mass cytometry time-of-flight 


  1. 1.
    Estey E, Dohner H (2006) Acute myeloid leukaemia. Lancet 368:1894–1907CrossRefPubMedGoogle Scholar
  2. 2.
    Szer J (2012) The prevalent predicament of relapsed acute myeloid leukemia. Hematology Am Soc Hematol Am Soc Hematol Educ Program 2012:43–48Google Scholar
  3. 3.
    Konopleva MY, Jordan CT (2011) Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol 29:591–599CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648CrossRefPubMedGoogle Scholar
  5. 5.
    Hope KJ, Jin L, Dick JE (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5:738–743CrossRefPubMedGoogle Scholar
  6. 6.
    Shlush LI, Zandi S, Mitchell A et al (2014) Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506:328–333CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hope KJ, Jin L, Dick JE (2003) Human acute myeloid leukemia stem cells. Arch Med Res 34:507–514CrossRefPubMedGoogle Scholar
  8. 8.
    Dombret H, Gardin C (2016) An update of current treatments for adult acute myeloid leukemia. Blood 127:53–61CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chattopadhyay PK, Perfetto SP, Roederer M (2004) The colorful future of cell analysis by flow cytometry. Discov Med 4:255–262PubMedGoogle Scholar
  10. 10.
    Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4:648–655CrossRefPubMedGoogle Scholar
  11. 11.
    Bandura DR, Baranov VI, Ornatsky OI et al (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81:6813–6822CrossRefPubMedGoogle Scholar
  12. 12.
    Ornatsky O, Bandura D, Baranov V, Nitz M, Winnik MA, Tanner S (2010) Highly multiparametric analysis by mass cytometry. J Immunol Methods 361:1–20CrossRefPubMedGoogle Scholar
  13. 13.
    Qiu P, Simonds EF, Bendall SC et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29:886–U181CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Amir el AD, Davis KL, Tadmor MD et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31:545–552CrossRefGoogle Scholar
  15. 15.
    Behbehani GK, Samusik N, Bjornson ZB, Fantl WJ, Medeiros BC, Nolan GP (2015) Mass cytometric functional profiling of acute myeloid leukemia defines cell-cycle and immunophenotypic properties that correlate with known responses to therapy. Cancer Discov 5:988–1003CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Han L, Qiu P, Zeng Z et al (2015) Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells. Cytometry A 87:346–356CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Levine JH, Simonds EF, Bendall SC et al (2015) Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162:184–197CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Finck R, Simonds EF, Jager A et al (2013) Normalization of mass cytometry data with bead standards. Cytometry A 83:483–494CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fienberg HG, Simonds EF, Fantl WJ, Nolan GP, Bodenmiller B (2012) A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry A 81:467–475CrossRefPubMedGoogle Scholar
  20. 20.
    Zunder ER, Finck R, Behbehani GK et al (2015) Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat Protoc 10:316–333CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bendall SC, Davis KL, Amir el AD et al (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157:714–725CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Zhihong Zeng
    • 1
  • Marina Konopleva
    • 1
  • Michael Andreeff
    • 1
    Email author
  1. 1.Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations