Molecular Malfeasance Mediating Myeloid Malignancies: The Genetics of Acute Myeloid Leukemia

  • Rebecca L. King
  • Adam Bagg
Part of the Methods in Molecular Biology book series (MIMB, volume 1633)


A remarkable number of different, but recurrent, structural cytogenetic abnormalities have been observed in AML, and the 2016 WHO AML classification system incorporates numerous distinct entities associated with translocations or inversions, as well as others associated with single gene mutations into a category entitled “AML with recurrent genetic abnormalities.” The AML classification is heavily reliant on cytogenetic and molecular information based on conventional genetic techniques (including karyotype, fluorescence in situ hybridization, reverse transcriptase polymerase chain reaction, single gene sequencing), but large-scale next generation sequencing is now identifying novel mutations. With targeted next generation sequencing panels now clinically available at many centers, detection of mutations, as well as alterations in epigenetic modifiers, is becoming part of the routine diagnostic evaluation of AML and will likely impact future classification schemes.

Key words

Acute myeloid leukemia 2016 WHO AML classification Acute promyelocytic leukemia NGS Karyotype FISH RT-PCR Epigenetics 


  1. 1.
    Bennett JM, Catovsky D, Daniel MT et al (1976) Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 33(4):451–458PubMedCrossRefGoogle Scholar
  2. 2.
    Swerdlow S, Campo E, Harris NL et al (2008) WHO classification of tumours of haematopoietic and lymphoid tissues, vol 2, 4th edn. IARC Press, LyonGoogle Scholar
  3. 3.
    Arber DA, Orazi A, Hasserjian R et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405PubMedCrossRefGoogle Scholar
  4. 4.
    Foucar K, Anastasi J (2015) Acute myeloid leukemia with recurrent cytogenetic abnormalities. Am J Clin Pathol 144(1):6–18PubMedCrossRefGoogle Scholar
  5. 5.
    Degos L (1992) All-trans-retinoic acid treatment and retinoic acid receptor alpha gene rearrangement in acute promyelocytic leukemia: a model for differentiation therapy. Int J Cell Cloning 10(2):63–69PubMedCrossRefGoogle Scholar
  6. 6.
    Abla O, Ribeiro RC (2014) How I treat children and adolescents with acute promyelocytic leukaemia. Br J Haematol 164(1):24–38PubMedCrossRefGoogle Scholar
  7. 7.
    Molica M, Breccia M (2015) FLT3-ITD in acute promyelocytic leukemia: clinical distinct profile but still controversial prognosis. Leuk Res 39(4):397–399PubMedCrossRefGoogle Scholar
  8. 8.
    Adams J, Nassiri M (2015) Acute Promyelocytic leukemia: a review and discussion of variant translocations. Arch Pathol Lab Med 139(10):1308–1313PubMedCrossRefGoogle Scholar
  9. 9.
    Brunel V, Lafage-Pochitaloff M, Alcalay M, Pelicci PG, Birg F (1996) Variant and masked translocations in acute promyelocytic leukemia. Leuk Lymphoma 22(3–4):221–228PubMedCrossRefGoogle Scholar
  10. 10.
    Jansen JH, Lowenberg B (2001) Acute promyelocytic leukemia with a PLZF-RARalpha fusion protein. Semin Hematol 38(1):37–41PubMedCrossRefGoogle Scholar
  11. 11.
    Guidez F, Parks S, Wong H et al (2007) RARalpha-PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid resistance in t(11;17) acute promyelocytic leukemia. Proc Natl Acad Sci U S A 104(47):18694–18699PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Redner RL (2002) Variations on a theme: the alternate translocations in APL. Leukemia 16(10):1927–1932PubMedCrossRefGoogle Scholar
  13. 13.
    Rossi V, Levati L, Biondi A (2006) Diagnosis and monitoring of PML-RARA-positive acute promyelocytic leukemia by qualitative RT-PCR. Methods Mol Med 125:115–126PubMedGoogle Scholar
  14. 14.
    Sinha C, Cunningham LC, Liu PP (2015) Core binding factor acute myeloid leukemia: new prognostic categories and therapeutic opportunities. Semin Hematol 52(3):215–222PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Grimwade D, Hills RK, Moorman AV et al (2010) Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116:354–365PubMedCrossRefGoogle Scholar
  16. 16.
    Wong KF, Kwong YL (1999) Trisomy 22 in acute myeloid leukemia: a marker for myeloid leukemia with monocytic features and cytogenetically cryptic inversion 16. Cancer Genet Cytogenet 109(2):131–133PubMedCrossRefGoogle Scholar
  17. 17.
    Costello R, Sainty D, Lecine P et al (1997) Detection of CBFbeta/MYH11 fusion transcripts in acute myeloid leukemia: heterogeneity of cytological and molecular characteristics. Leukemia 11(5):644–650PubMedCrossRefGoogle Scholar
  18. 18.
    Claxton D, Xie QS, Patel S, Deisseroth AB, Kornblau S (1996) The gene product of CBFB-MYH11. Leukemia 10(9):1479–1485PubMedGoogle Scholar
  19. 19.
    Paschka P, Du J, Schlenk RF et al (2013) Secondary genetic lesions in acute myeloid leukemia with inv(16) or t(16;16): a study of the German-Austrian AML study group (AMLSG). Blood 121(1):170–177PubMedCrossRefGoogle Scholar
  20. 20.
    Paschka P, Marcucci G, Ruppert AS et al (2006) Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a cancer and leukemia group B study. J Clin Oncol 24(24):3904–3911PubMedCrossRefGoogle Scholar
  21. 21.
    Schoch C, Schnittger S, Klaus M et al (2003) AML with 11q23//MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood 102:2395–2402PubMedCrossRefGoogle Scholar
  22. 22.
    Meyer C, Hofmann J, Burmeister T et al (2013) The MLL recombinome of acute leukemias in 2013. Leukemia 27(11):2165–2176PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Balgobind BV, Raimondi SC, Harbott J et al (2009) Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood 114(12):2489–2496PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Fianchi L, Pagano L, Piciocchi A et al (2015) Characteristics and outcome of therapy-related myeloid neoplasms: report from the Italian network on secondary leukemias. Am J Hematol 90(5):E80–E85PubMedCrossRefGoogle Scholar
  25. 25.
    Krivtsov AV, Armstrong SA (2007) MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 7(11):823–833PubMedCrossRefGoogle Scholar
  26. 26.
    Chen CW, Koche RP, Sinha AU et al (2015) DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat Med 21(4):335–343PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Zhou J, Wu J, Li B et al (2014) PU.1 is essential for MLL leukemia partially via crosstalk with the MEIS/HOX pathway. Leukemia 28(7):1436–1448PubMedCrossRefGoogle Scholar
  28. 28.
    Aikawa Y, Yamagata K, Katsumoto T et al (2015) Essential role of PU.1 in maintenance of mixed lineage leukemia-associated leukemic stem cells. Cancer Sci 106(3):227–236PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Emerenciano M, Meyer C, Mansur MB, Marschalek R, Pombo-de-Oliveira MS (2013) The distribution of MLL breakpoints correlates with outcome in infant acute leukaemia. Br J Haematol 161(2):224–236PubMedCrossRefGoogle Scholar
  30. 30.
    Tarlock K, Alonzo TA, Moraleda PP et al (2014) Acute myeloid leukaemia (AML) with t(6;9)(p23;q34) is associated with poor outcome in childhood AML regardless of FLT3-ITD status: a report from the Children’s oncology group. Br J Haematol 166(2):254–259PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ageberg M, Drott K, Olofsson T, Gullberg U, Lindmark A (2008) Identification of a novel and myeloid specific role of the leukemia-associated fusion protein DEK-NUP214 leading to increased protein synthesis. Genes Chromosomes Cancer 47(4):276–287PubMedCrossRefGoogle Scholar
  32. 32.
    von Lindern M, Breems D, van Baal S, Adriaansen H, Grosveld G (1992) Characterization of the translocation breakpoint sequences of two DEK-CAN fusion genes present in t(6;9) acute myeloid leukemia and a SET-CAN fusion gene found in a case of acute undifferentiated leukemia. Genes Chromosomes Cancer 5(3):227–234CrossRefGoogle Scholar
  33. 33.
    Lugthart S, Groschel S, Beverloo HB et al (2010) Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia. J Clin Oncol 28(24):3890–3898PubMedCrossRefGoogle Scholar
  34. 34.
    Yamazaki H, Suzuki M, Otsuki A et al (2014) A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression. Cancer Cell 25(4):415–427PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Shearer BM, Sukov WR, Flynn HC, Knudson RA, Ketterling RP (2010) Development of a dual-color, double fusion FISH assay to detect RPN1/EVI1 gene fusion associated with inv(3), t(3;3), and ins(3;3) in patients with myelodysplasia and acute myeloid leukemia. Am J Hematol 85(8):569–574PubMedCrossRefGoogle Scholar
  36. 36.
    Lion T, Haas OA (1993) Acute megakaryocytic leukemia with the t(1;22)(p13;q13). Leuk Lymphoma 11(1–2):15–20PubMedCrossRefGoogle Scholar
  37. 37.
    Carroll A, Civin C, Schneider N et al (1991) The t(1;22) (p13;q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a pediatric oncology group study. Blood 78(3):748–752PubMedGoogle Scholar
  38. 38.
    Inaba H, Zhou Y, Abla O et al (2015) Heterogeneous cytogenetic subgroups and outcomes in childhood acute megakaryoblastic leukemia: a retrospective international study. Blood 126(13):1575–1584PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mercher T, Raffel GD, Moore SA et al (2009) The OTT-MAL fusion oncogene activates RBPJ-mediated transcription and induces acute megakaryoblastic leukemia in a knockin mouse model. J Clin Invest 119(4):852–864PubMedPubMedCentralGoogle Scholar
  40. 40.
    Soupir CP, Vergilio JA, Dal Cin P et al (2007) Philadelphia chromosome-positive acute myeloid leukemia: a rare aggressive leukemia with clinicopathologic features distinct from chronic myeloid leukemia in myeloid blast crisis. Am J Clin Pathol 127(4):642–650PubMedCrossRefGoogle Scholar
  41. 41.
    Nacheva EP, Grace CD, Brazma D et al (2013) Does BCR/ABL1 positive acute myeloid leukaemia exist? Br J Haematol 161(4):541–550PubMedCrossRefGoogle Scholar
  42. 42.
    Konoplev S, Yin CC, Kornblau SM et al (2013) Molecular characterization of de novo Philadelphia chromosome-positive acute myeloid leukemia. Leuk Lymphoma 54(1):138–144PubMedCrossRefGoogle Scholar
  43. 43.
    Moon JH, Lee YJ, Seo SK et al (2015) Outcomes of allogeneic hematopoietic cell transplantation in acute myeloid leukemia patients with monosomal karyotypes. Acta Haematol 133(4):327–335PubMedCrossRefGoogle Scholar
  44. 44.
    Weinberg OK, Ohgami RS, Ma L et al (2014) Acute myeloid leukemia with monosomal karyotype: morphologic, immunophenotypic, and molecular findings. Am J Clin Pathol 142(2):190–195PubMedCrossRefGoogle Scholar
  45. 45.
    Murati A, Brecqueville M, Devillier R et al (2012) Myeloid malignancies: mutations, models and management. BMC Cancer 12:304PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Meyer SC, Levine RL (2014) Translational implications of somatic genomics in acute myeloid leukaemia. Lancet Oncol 15(9):e382–ee94PubMedCrossRefGoogle Scholar
  47. 47.
    Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia (2013) N Engl J Med 368(22):2059–2074CrossRefGoogle Scholar
  48. 48.
    Ohgami RS, Ma L, Merker JD et al (2015) Next-generation sequencing of acute myeloid leukemia identifies the significance of TP53, U2AF1, ASXL1, and TET2 mutations. Mod Pathol 28(5):706–714PubMedCrossRefGoogle Scholar
  49. 49.
    Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG (2002) Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4(7):529–533PubMedCrossRefGoogle Scholar
  50. 50.
    Boissel N, Renneville A, Biggio V et al (2005) Prevalence, clinical profile, and prognosis of NPM mutations in AML with normal karyotype. Blood 106(10):3618–3620PubMedCrossRefGoogle Scholar
  51. 51.
    Thiede C, Koch S, Creutzig E et al (2006) Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 107(10):4011–4020PubMedCrossRefGoogle Scholar
  52. 52.
    Diaz-Beya M, Rozman M, Pratcorona M et al (2010) The prognostic value of multilineage dysplasia in de novo acute myeloid leukemia patients with intermediate-risk cytogenetics is dependent on NPM1 mutational status. Blood 116(26):6147–6148PubMedCrossRefGoogle Scholar
  53. 53.
    Stirewalt DL, Radich JP (2003) The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 3(9):650–665PubMedCrossRefGoogle Scholar
  54. 54.
    Thiede C, Steudel C, Mohr B et al (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99(12):4326–4335PubMedCrossRefGoogle Scholar
  55. 55.
    Grunwald MR, Levis MJ (2015) FLT3 tyrosine kinase inhibition as a paradigm for targeted drug development in acute myeloid leukemia. Semin Hematol 52(3):193–199PubMedCrossRefGoogle Scholar
  56. 56.
    Pabst T, Mueller BU, Zhang P et al (2001) Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 27(3):263–270PubMedCrossRefGoogle Scholar
  57. 57.
    Green CL, Koo KK, Hills RK et al (2010) Prognostic significance of CEBPA mutations in a large cohort of younger adult patients with acute myeloid leukemia: impact of double CEBPA mutations and the interaction with FLT3 and NPM1 mutations. J Clin Oncol 28(16):2739–2747PubMedCrossRefGoogle Scholar
  58. 58.
    Bacher U, Schnittger S, Macijewski K et al (2012) Multilineage dysplasia does not influence prognosis in CEBPA-mutated AML, supporting the WHO proposal to classify these patients as a unique entity. Blood 119(20):4719–4722PubMedCrossRefGoogle Scholar
  59. 59.
    Gaidzik VI, Bullinger L, Schlenk RF et al (2011) RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Oncol 29(10):1364–1372PubMedCrossRefGoogle Scholar
  60. 60.
    Dohner K, Tobis K, Ulrich R et al (2002) Prognostic significance of partial tandem duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: a study of the acute myeloid leukemia study group Ulm. J Clin Oncol 20(15):3254–3261PubMedCrossRefGoogle Scholar
  61. 61.
    DiNardo CD, Bannon SA, Routbort M et al (2016) Evaluation of patients and families with concern for predispositions to hematologic malignancies within the hereditary hematologic malignancy clinic (HHMC). Clin Lymphoma Myeloma Leuk 16(7):417–428PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Wertheim GB, Smith C, Luskin M et al (2015) Validation of DNA methylation to predict outcome in acute myeloid leukemia by use of xMELP. Clin Chem 61(1):249–258PubMedCrossRefGoogle Scholar
  63. 63.
    Figueroa ME, Lugthart S, Li Y et al (2010) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17(1):13–27PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ley TJ, Ding L, Walter MJ et al (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363:2424–2433PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Yan XJ, Xu J, Gu ZH et al (2011) Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 43(4):309–315PubMedCrossRefGoogle Scholar
  66. 66.
    Bhatnagar B, Eisfeld AK, Nicolet D et al (2016) Persistence of DNMT3A R882 mutations during remission does not adversely affect outcomes of patients with acute myeloid leukaemia. Br J Haematol 175(2):226–236PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lindsley RC, Mar BG, Mazzola E et al (2015) Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 125(9):1367–1376PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Division of Hematopathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA
  2. 2.Division of Hematopathology, Department of Pathology and Laboratory MedicineHospital of the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations