Evaluation of Thermal Stability of RNA Nanoparticles by Temperature Gradient Gel Electrophoresis (TGGE) in Native Condition

  • Kheiria Benkato
  • Benjamin O’Brien
  • My N. Bui
  • Daniel L. Jasinski
  • Peixuan Guo
  • Emil F. KhisamutdinovEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1632)


Temperature gradient gel electrophoresis (TGGE) is a powerful tool used to analyze the thermal stabilities of nucleic acids. While TGGE is a decades-old technique, it has recently gained favor in the field of RNA nanotechnology, notably in assessing the thermal stabilities of RNA nanoparticles (NPs). With TGGE, an electrical current and a linear temperature gradient are applied simultaneously to NP-loaded polyacrylamide gel, separating the negatively charged NPs based on their thermal behavior (a more stable RNA complex will remain intact through higher temperature ranges). The linear temperature gradient can be set either perpendicular or parallel to the electrical current, as either will make the NPs undergo a transition from native to denatured conformations. Often, the melting transition is influenced by sequence variations, secondary/tertiary structures, concentrations, and external factors such as the presence of a denaturing agent (e.g., urea), the presence of monovalent or divalent metal ions, and the pH of the solvent. In this chapter, we describe the experimental setup and the analysis of the thermal stability of RNA NPs in native conditions using a modified version of a commercially available TGGE system.

Key words

Temperature gradient gel electrophoresis TGGE Melting temperature RNA nanoparticle pRNA 3-way junction 3WJ 



We thank Seth Abels for proofreading this work and leaving valuable comments. The research was supported by Department of Chemistry BSU start-up funds, Chemistry Research Immersion Summer Program (CRISP) at BSU and Indiana Academy of Science grant # G9000602A to Emil Khisamutdinov.


  1. 1.
    SantaLucia J Jr, Hicks D (2004) The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct 33:415–440CrossRefPubMedGoogle Scholar
  2. 2.
    Chadalavada DM, Bevilacqua PC (2009) Analyzing RNA and DNA folding using temperature gradient gel electrophoresis (TGGE) with application to in vitro selections. Methods Enzymol 468:389–408CrossRefPubMedGoogle Scholar
  3. 3.
    Nakano M, Moody EM, Liang J, Bevilacqua PC (2002) Selection for thermodynamically stable DNA tetraloops using temperature gradient gel electrophoresis reveals four motifs: d(cGNNAg), d(cGNABg),d(cCNNGg), and d(gCNNGc). Biochemistry 41:14281–14292CrossRefPubMedGoogle Scholar
  4. 4.
    Ellington AD, Szostak JW (1990) Invitro selection of RNA molecules that bind specific ligands. Nature 346:818–822CrossRefPubMedGoogle Scholar
  5. 5.
    Manzano M, Cocolin L, Iacumin L, Cantoni C, Comi G (2005) A PCR-TGGE (Temperature Gradient Gel Electrophoresis) technique to assess differentiation among enological Saccharomyces cerevisiae strains. Int J Food Microbiol 101:333–339CrossRefPubMedGoogle Scholar
  6. 6.
    Van den Bossche A, Van Nevel C, Herman L, Decuypere J, De Smet S, Dierick N, Heyndrickx M (2001) PCR-TGGE: a method for fingerprinting the microbial flora in the small intestine of pigs. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 66:359–363PubMedGoogle Scholar
  7. 7.
    Kang J, Harders J, Riesner D, Henco K (1994) TGGE in quantitative PCR of DNA and RNA. Methods Mol Biol 31:229–235PubMedGoogle Scholar
  8. 8.
    Myers RM, Fischer SG, Lerman LS, Maniatis T (1985) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 13:3131–3145CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Danko P, Kozak A, Podhradsky D, Viglasky V (2005) Analysis of DNA intercalating drugs by TGGE. J Biochem Biophys Methods 65:89–95CrossRefPubMedGoogle Scholar
  10. 10.
    Henco K, Harders J, Wiese U, Riesner D (1994) Temperature gradient gel electrophoresis (TGGE) for the detection of polymorphic DNA and RNA. Methods Mol Biol 31:211–228PubMedGoogle Scholar
  11. 11.
    Sorlie T, Johnsen H, Vu P, Lind GE, Lothe R, Borresen-Dale AL (2005) Mutation screening of the TP53 gene by temporal temperature gradient gel electrophoresis. Methods Mol Biol 291:207–216PubMedGoogle Scholar
  12. 12.
    Viglasky V (2013) Polyacrylamide temperature gradient gel electrophoresis. Methods Mol Biol 1054:159–171CrossRefPubMedGoogle Scholar
  13. 13.
    Binzel DW, Khisamutdinov EF, Guo PX (2014) Entropy-driven one-step formation of Phi29 pRNA 3WJ from three RNA fragments. Biochemistry 53:2221–2231CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Khisamutdinov EF, Jasinski DL, Guo P (2014) RNA as a boiling-resistant anionic polymer material to build robust structures with defined shape and stoichiometry. ACS Nano 8:4771–4781CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Khisamutdinov EF, Li H, Jasinski DL, Chen J, Fu J, Guo P (2014) Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res 42:9996–10004CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Severcan I, Geary C, Verzemnieks E, Chworos A, Jaeger L (2009) Square-shaped RNA particles from different RNA folds. Nano Lett 9:1270–1277CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Grabow WW, Zakrevsky P, Afonin KA, Chworos A, Shapiro BA, Jaeger L (2011) Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 11:878–887CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Afonin KA, Bindewald E, Yaghoubian AJ, Voss N, Jacovetty E, Shapiro BA, Jaeger L (2010) In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nanotechnol 5:676–682CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Severcan I, Geary C, Chworos A, Voss N, Jacovetty E, Jaeger L (2010) A polyhedron made of tRNAs. Nat Chem 2:772–779CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Binzel DW, Khisamutdinov EF, Guo PX (2014) Addition to entropy-driven one-step formation of Phi29 pRNA 3WJ from three RNA Fragments. Biochemistry 53:3709CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Kheiria Benkato
    • 1
  • Benjamin O’Brien
    • 1
  • My N. Bui
    • 1
  • Daniel L. Jasinski
    • 2
    • 3
    • 4
  • Peixuan Guo
    • 2
  • Emil F. Khisamutdinov
    • 1
    Email author
  1. 1.Department of ChemistryBall State UniversityMuncieUSA
  2. 2.Department of Physiology and Cell Biology, College of PharmacyThe Ohio State UniversityColumbusUSA
  3. 3.Division of Pharmaceutics and Pharmaceutical Chemistry, College of PharmacyThe Ohio State UniversityColumbusUSA
  4. 4.Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State UniversityColumbusUSA

Personalised recommendations