Chitosan Nanoparticles for miRNA Delivery

  • Merve Denizli
  • Burcu Aslan
  • Lingegowda S. Mangala
  • Dahai Jiang
  • Cristian Rodriguez-Aguayo
  • Gabriel Lopez-Berestein
  • Anil K. SoodEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1632)


RNA interference techniques represent a promising strategy for therapeutic applications. In addition to small interfering RNA-based approaches, which have been widely studied and translated into clinical investigations, microRNA-based approaches are attractive owing to their “one hit, multiple targets” concept. To overcome challenges with in vivo delivery of microRNAs related to stability, cellular uptake, and specific delivery, our group has developed and characterized chitosan nanoparticles for nucleotide delivery. This platform allows for robust target modulation and antitumor activity following intravenous administration.

Key words

RNA interference miR-34a microRNA delivery Chitosan nanoparticles Prostate cancer 



Portions of this work were supported by the NIH (CA016672, CA109298, P50 CA083639, P50 CA098258, UH3 TR000943), the Ovarian Cancer Research Fund, Inc. (Program Project Development Grant), the Blanton-Davis Ovarian Cancer Research Program, the RGK Foundation, and the Gilder Foundation.


  1. 1.
    Bobbin ML, Rossi JJ (2016) RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu Rev Pharmacol Toxicol 56:103–122CrossRefPubMedGoogle Scholar
  2. 2.
    SY W, Lopez-Berestein G, Calin GA, Sood AK (2014) RNAi therapies: drugging the undruggable. Sci Transl Med 6(240):240ps247–240ps247Google Scholar
  3. 3.
    Wilson RC, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239CrossRefPubMedGoogle Scholar
  4. 4.
    Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8(1):23–36. doi: 10.1038/nrm2085 CrossRefPubMedGoogle Scholar
  6. 6.
    Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349CrossRefPubMedGoogle Scholar
  7. 7.
    Tijsterman M, Plasterk RH (2004) Dicers at RISC: the mechanism of RNAi. Cell 117(1):1–3CrossRefPubMedGoogle Scholar
  8. 8.
    Lam JK, Chow MY, Zhang Y, Leung SW (2015) siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 4(9):e252CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ledford H (2015) Cancer: the Ras renaissance. Nature 520(7547):278–280. doi: 10.1038/520278a CrossRefPubMedGoogle Scholar
  10. 10.
    Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW (2014) Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer 14(4):248–262. doi: 10.1038/nrc3690 CrossRefPubMedGoogle Scholar
  11. 11.
    Ramos P, Bentires-Alj M (2015) Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene 34(28):3617–3626. doi: 10.1038/onc.2014.314 CrossRefPubMedGoogle Scholar
  12. 12.
    Gharpure KM, SY W, Li C, Lopez-Berestein G, Sood AK (2015) Nanotechnology: future of oncotherapy. Clin Cancer Res 21(14):3121–3130CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G (2015) Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev 87:108–119CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792CrossRefGoogle Scholar
  15. 15.
    Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58CrossRefPubMedGoogle Scholar
  16. 16.
    Choi C, Nam J-P, Nah J-W (2016) Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem 33:1–10CrossRefGoogle Scholar
  17. 17.
    Ragelle H, Vandermeulen G, Préat V (2013) Chitosan-based siRNA delivery systems. J Control Release 172(1):207–218CrossRefPubMedGoogle Scholar
  18. 18.
    Han HD, Mangala LS, Lee JW, Shahzad MM, Kim HS, Shen D, Nam EJ, Mora EM, Stone RL, Lu C (2010) Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res 16(15):3910–3922CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lu C, Han HD, Mangala LS, Ali-Fehmi R, Newton CS, Ozbun L, Armaiz-Pena GN, Hu W, Stone RL, Munkarah A (2010) Regulation of tumor angiogenesis by EZH2. Cancer Cell 18(2):185–197CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim H-S, Han HD, Armaiz-Pena GN, Stone RL, Nam EJ, Lee J-W, Shahzad MM, Nick AM, Lee SJ, Roh J-W (2011) Functional roles of Src and Fgr in ovarian carcinoma. Clin Cancer Res 17(7):1713–1721CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Steg AD, Katre AA, Goodman B, Han H-D, Nick AM, Stone RL, Coleman RL, Alvarez RD, Lopez-Berestein G, Sood AK (2011) Targeting the notch ligand JAGGED1 in both tumor cells and stroma in ovarian cancer. Clin Cancer Res 17(17):5674–5685CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hu W, Lu C, Dong HH, Huang J, D-y S, Stone RL, Nick AM, Shahzad MM, Mora E, Jennings NB (2011) Biological roles of the delta family notch ligand Dll4 in tumor and endothelial cells in ovarian cancer. Cancer Res 71(18):6030–6039CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hussein YR, Sood AK, Bandyopadhyay S, Albashiti B, Semaan A, Nahleh Z, Roh J, Han HD, Lopez-Berestein G, Ali-Fehmi R (2012) Clinical and biological relevance of enhancer of zeste homolog 2 in triple-negative breast cancer. Hum Pathol 43(10):1638–1644CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ziebarth AJ, Nowsheen S, Steg AD, Shah MM, Katre AA, Dobbin ZC, Han H-D, Lopez-Berestein G, Sood AK, Conner M (2013) Endoglin (CD105) contributes to platinum resistance and is a target for tumor-specific therapy in epithelial ovarian cancer. Clin Cancer Res 19(1):170–182CrossRefPubMedGoogle Scholar
  25. 25.
    Krzeszinski JY, Wei W, Huynh H, Jin Z, Wang X, Chang T-C, Xie X-J, He L, Mangala LS, Lopez-Berestein G (2014) miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature 512(7515):431–435CrossRefPubMedGoogle Scholar
  26. 26.
    Aslan B, Monroig P, Hsu MC, Pena GA, Rodriguez-Aguayo C, Gonzalez-Villasana V, Rupaimoole R, Nagaraja AS, Mangala S, Han HD, Yuca E, SY W, Ivan C, Moss TJ, Ram PT, Wang H, Gol-Chambers A, Ozkayar O, Kanlikilicer P, Fuentes-Mattei E, Kahraman N, Pradeep S, Ozpolat B, Tucker S, Hung MC, Baggerly K, Bartholomeusz G, Calin G, Sood AK, Lopez-Berestein G (2015) The ZNF304-integrin axis protects against anoikis in cancer. Nat Commun 6:7351. doi: 10.1038/ncomms8351 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pecot CV, Rupaimoole R, Yang D, Akbani R, Ivan C, Lu C, Wu S, Han H-D, Shah MY, Rodriguez-Aguayo C (2013) Tumour angiogenesis regulation by the miR-200 family. Nat Commun 4:2427CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gaur S, Wen Y, Song JH, Parikh NU, Mangala LS, Blessing AM, Ivan C, Wu SY, Varkaris A, Shi Y (2015) Chitosan nanoparticle-mediated delivery of miRNA-34a decreases prostate tumor growth in the bone and its expression induces non-canonical autophagy. Oncotarget 6(30):29161PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Merve Denizli
    • 1
  • Burcu Aslan
    • 1
    • 2
  • Lingegowda S. Mangala
    • 2
    • 3
  • Dahai Jiang
    • 2
    • 3
  • Cristian Rodriguez-Aguayo
    • 1
    • 2
  • Gabriel Lopez-Berestein
    • 1
    • 2
    • 5
  • Anil K. Sood
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Department of Experimental TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Center for RNA Interference and Non-coding RNAThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonUSA
  4. 4.Program in Cancer Biology and Cancer MetastasisThe University of Texas Graduate School of Biomedical Sciences at HoustonHoustonUSA
  5. 5.Department of Cancer BiologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations