Advertisement

ChIP-Seq Analysis for Identifying Genome-Wide Histone Modifications Associated with Stress-Responsive Genes in Plants

  • Guosheng Li
  • Guru Jagadeeswaran
  • Andrew Mort
  • Ramanjulu SunkarEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1631)

Abstract

Histone modifications represent the crux of epigenetic gene regulation essential for most biological processes including abiotic stress responses in plants. Thus, identification of histone modifications at the genome-scale can provide clues for how some genes are ‘turned-on’ while some others are “turned-off” in response to stress. This chapter details a step-by-step protocol for identifying genome-wide histone modifications associated with stress-responsive gene regulation using chromatin immunoprecipitation (ChIP) followed by sequencing of the DNA (ChIP-seq).

Key words

Abiotic stresses Chromatin immunoprecipitation (ChIP) Epigenome Gene regulation Histone modifications 

Notes

Acknowledgments

The work in RS laboratory was supported by the Oklahoma Center for Advancement of Science and Technology and Oklahoma Agricultural Experiment Station. AM acknowledges the Stevens endowed Chair professorship in Agricultural Biotechnology of DASNR, OSU.

References

  1. 1.
    Temel A, Janack B, Humbeck K (2015) Epigenetic regulation in plants. Chichester, John Wiley & Sons, Ltd. doi: 10.1002/9780470015902.a0021848 CrossRefGoogle Scholar
  2. 2.
    Lauria M, Rossi V (2011) Epigenetic control of gene regulation in plants. Biochim Biophys Acta 1809:369–378CrossRefPubMedGoogle Scholar
  3. 3.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705CrossRefPubMedGoogle Scholar
  4. 4.
    Yuna L, Liu X, Luo M, Yang S, Wu K (2013) Involvement of histone dmofications in plant abiotic stress responses. J Int Plant Biol 55:892–901Google Scholar
  5. 5.
    Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352CrossRefPubMedGoogle Scholar
  6. 6.
    Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58CrossRefGoogle Scholar
  8. 8.
    Juenger T (2013) Natural variation and genetic constraints on drought tolerance. Curr Opin Plant Biol 16:274–281CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kim JM, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49:1580–1588CrossRefPubMedGoogle Scholar
  11. 11.
    Kwon CS, Lee D, Choi G, Chung W (2009) Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. Plant J 60:112–121CrossRefPubMedGoogle Scholar
  12. 12.
    van Dijk K, Ding Y, Malkaram S, Riethoven JJ, Liu R, Yang J, Laczko P, Chen H, Xia Y, Ladunga I, Avramova Z, Fromm M (2010) Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. BMC Plant Biol 10:238CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Han SK, Wagner D (2014) Role of chromatin in water stress responses in plants. J Exp Bot 65:2785–2799CrossRefPubMedGoogle Scholar
  14. 14.
    Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M (2006) Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol 47:995–1003CrossRefPubMedGoogle Scholar
  15. 15.
    Song Y, Ji D, Li S, Wang P, Li Q, Xiang F (2012) The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS One 7:e41274CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533–538CrossRefPubMedGoogle Scholar
  18. 18.
    Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837CrossRefPubMedGoogle Scholar
  19. 19.
    Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Guosheng Li
    • 1
  • Guru Jagadeeswaran
    • 1
  • Andrew Mort
    • 1
  • Ramanjulu Sunkar
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterUSA

Personalised recommendations