Advertisement

Toward a Resilient, Functional Microbiome: Drought Tolerance-Alleviating Microbes for Sustainable Agriculture

  • Venkatachalam Lakshmanan
  • Prasun Ray
  • Kelly D. Craven
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1631)

Abstract

In recent years, the utilization of novel sequencing techniques opened a new field of research into plant microbiota and was used to explore a wide diversity of microorganisms both inside and outside of plant host tissues, i.e., the endosphere and rhizosphere, respectively. An early realization from such research was that species richness and diversity of the plant microbiome are both greater than believed even a few years ago, and soil is likely home to the most abundant and diverse microbial habitats known. In most ecosystems sampled thus far, overall microbial complexity is determined by the combined influences of plant genotype, soil structure and chemistry, and prevailing environmental conditions, as well as the native “bulk soil” microbial populations from which membership is drawn. Beneficial microorganisms, traditionally referring primarily to nitrogen-fixing bacteria, plant growth-promoting rhizobacteria, and mycorrhizal fungi, play a key role in major functions such as plant nutrition acquisition and plant resistance to biotic and abiotic stresses. Utilization of plant-associated microbes in food production is likely to be critical for twenty-first century agriculture, where arable cropland is limited and food, fiber, and feed productivity must be sustained or even improved with fewer chemical inputs and less irrigation.

Key words

Mycorrhiza Next-generation sequencing Phytobiome Plant-associated microbiomes Sustainable agriculture 

Notes

Acknowledgments

This work was supported by the US Department of Energy, Bioenergy Research Center, through the Office of Biological and Environmental Research in the DOE Office of Science and The Samuel Roberts Noble Foundation. We declare no conflict of interests inherent to this submission.

References

  1. 1.
    Molden D, Oweis TY, Pasquale S, Kijne JW, Hanjra MA et al (2007) Pathways for increasing agricultural water productivity. In: Water for food, water for life, a comprehensive assessment of water management in agriculture. Earthscan and International Water Management Institute, London, pp 279–310Google Scholar
  2. 2.
    Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 15:151–161Google Scholar
  3. 3.
    Trenberth KE, Fasullo JT, Branstator G, Phillips AS (2014) Seasonal aspects of the recent pause in surface warming. Nat Clim Chang 4:911–916CrossRefGoogle Scholar
  4. 4.
    Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3:458–475Google Scholar
  5. 5.
    Pandey S, Bhandari H, Hardy B (2007) Economic costs of drought and rice farmers’ coping mechanisms. A crosscountry comparative analysis. International Rice Research Institute/World Scientific Publishing, Los Baños, Philippines/Singapore, pp 1–9Google Scholar
  6. 6.
    Dijk AI, Beck HE, Crosbie RS, Jeu RA, Liu YY et al (2013) The millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour Res 49:1040–1057CrossRefGoogle Scholar
  7. 7.
    Ray P, Craven KD (2016) Sebacina vermifera: a unique root symbiont with vast agronomic potential. World J Microbiol Biotechnol 32:1–10CrossRefGoogle Scholar
  8. 8.
    Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202CrossRefGoogle Scholar
  9. 9.
    Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122PubMedCrossRefGoogle Scholar
  10. 10.
    Sinclair TR (2011) Challenges in breeding for yield increase for drought. Trends Plant Sci 16:289–293PubMedCrossRefGoogle Scholar
  11. 11.
    Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F et al (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331PubMedCrossRefGoogle Scholar
  12. 12.
    Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: Current and future prospects. Appl Soil Ecol 105:109–125CrossRefGoogle Scholar
  13. 13.
    Zolla G, Badri DV, Bakker MG, Manter DK, Vivanco JM (2013) Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol 68:1–9CrossRefGoogle Scholar
  14. 14.
    Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486PubMedCrossRefGoogle Scholar
  15. 15.
    Rout ME, Southworth D (2013) The root microbiome influences scales from molecules to ecosystems: the unseen majority 1. Am J Bot 100:1689–1691PubMedCrossRefGoogle Scholar
  16. 16.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E et al (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369PubMedCrossRefGoogle Scholar
  18. 18.
    Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95PubMedCrossRefGoogle Scholar
  19. 19.
    Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J et al (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864PubMedCrossRefGoogle Scholar
  21. 21.
    Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci 112:E911–E920PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci 110:6548–6553PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J et al (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Fierer N, Ladau J, Clemente JC, Leff JW, Owens SM et al (2013) Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342:621–624PubMedCrossRefGoogle Scholar
  25. 25.
    Tautges NE, Sullivan TS, Reardon CL, Burke IC (2016) Soil microbial diversity and activity linked to crop yield and quality in a dryland organic wheat production system. Appl Soil Ecol 108:258–268CrossRefGoogle Scholar
  26. 26.
    Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803PubMedCrossRefGoogle Scholar
  27. 27.
    Lakshmanan V (2015) Root microbiome assemblage is modulated by plant host factors. Adv Bot Res 75:57–79CrossRefGoogle Scholar
  28. 28.
    Wagner MR, Lundberg DS, Tijana G, Tringe SG, Dangl JL et al (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151. doi: 10.1038/ncomms12151 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882PubMedCrossRefGoogle Scholar
  30. 30.
    Werner GD, Strassmann JE, Ivens AB, Engelmoer DJ, Verbruggen E et al (2014) Evolution of microbial markets. Proc Natl Acad Sci 111:1237–1244PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Van Loon LC, Rep M, Pieterse C (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162PubMedCrossRefGoogle Scholar
  32. 32.
    Bhattacharyya P, Jha D (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350PubMedCrossRefGoogle Scholar
  33. 33.
    Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  34. 34.
    Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefGoogle Scholar
  35. 35.
    Kloepper J, Schroth M (1978) Plant growth-promoting rhizobacteria on radishes. Proceedings of the 4th international conference on pathogenic bacteria, Tours, pp 879–882Google Scholar
  36. 36.
    Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339CrossRefGoogle Scholar
  37. 37.
    Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312PubMedCrossRefGoogle Scholar
  38. 38.
    Ghimire SR, Craven KD (2011) The ectomycorrhizal fungus Sebacina vermifera, enhances biomass production of switchgrass (Panicum virgatum L.) under drought conditions. Appl Environ Microbiol 77:7063–7067PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ray P, Ishiga T, Decker SR, Turner GB, Craven KD (2015) A novel delivery system for the root symbiotic fungus, Sebacina vermifera, and consequent biomass enhancement of low lignin COMT switchgrass lines. Bioenergy Res 8:922–933CrossRefGoogle Scholar
  40. 40.
    Tringe SG, Von Mering C, Kobayashi A, Salamov AA, Chen K et al (2005) Comparative metagenomics of microbial communities. Science 308:554–557PubMedCrossRefGoogle Scholar
  41. 41.
    Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci 74:5088–5090PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Mullis KB, Erlich HA, Arnheim N, Horn GT, Saiki RK, et al (1987) Process for amplifying, detecting, and/or-cloning nucleic acid sequences. US 4683195 AGoogle Scholar
  43. 43.
    Pinto AJ, Raskin L (2012) PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS One 7:e43093Google Scholar
  44. 44.
    Zhou J, Jiang Y-H, Deng Y, Shi Z, Zhou BY et al (2013) Random sampling process leads to overestimation of β-diversity of microbial communities. MBio 4:e00324–e00313PubMedPubMedCentralGoogle Scholar
  45. 45.
    Feinstein LM, Sul WJ, Blackwood CB (2009) Assessment of bias associated with incomplete extraction of microbial DNA from soil. Appl Environ Microbiol 75:5428–5433PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Aird D, Ross MG, Chen W-S, Danielsson M, Fennell T et al (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12:R18Google Scholar
  47. 47.
    Ahn J-H, Kim B-Y, Song J, Weon H-Y (2012) Effects of PCR cycle number and DNA polymerase type on the 16S rRNA gene pyrosequencing analysis of bacterial communities. J Microbiol 50:1071–1074Google Scholar
  48. 48.
    Kennedy K, Hall MW, Lynch MD, Moreno-Hagelsieb G, Neufeld JD (2014) Evaluating bias of Illumina-based bacterial 16S rRNA gene profiles. Appl Environ Microbiol 80:5717–5722PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    D’Amore R, Ijaz UZ, Schirmer M, Kenny JG, Gregory R et al (2016) A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genomics 17:55–74PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A et al (2016) Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol 34:942–949PubMedCrossRefGoogle Scholar
  51. 51.
    Yeoh YK, Paungfoo-Lonhienne C, Dennis PG, Robinson N, Ragan MA et al (2015) The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environ Microbiol 18:1338–1351PubMedCrossRefGoogle Scholar
  52. 52.
    Marques JM, da Silva TF, Vollu RE, Blank AF, Ding G-C et al (2014) Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol Ecol 88:424–435PubMedCrossRefGoogle Scholar
  53. 53.
    Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S et al (2016) Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol 209:798–811PubMedCrossRefGoogle Scholar
  54. 54.
    Köberl M, Dita M, Martinuz A, Staver C, Berg G (2015) Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America. Front Microbiol 6:91PubMedPubMedCentralGoogle Scholar
  55. 55.
    Zhang K, Shi Y, Jing X, He J-S, Sun R et al (2016) Effects of short-term warming and altered precipitation on soil microbial communities in alpine grassland of the Tibetan plateau. Front Microbiol 7:1032PubMedPubMedCentralGoogle Scholar
  56. 56.
    Schlaeppi K, Dombrowski N, Oter RG, van Themaat EVL, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci 111:585–592PubMedCrossRefGoogle Scholar
  57. 57.
    Steenwerth K, Drenovsky R, Lambert J-J, Kluepfel D, Scow K et al (2008) Soil morphology, depth and grapevine root frequency influence microbial communities in a Pinot noir vineyard. Soil Biol Biochem 40:1330–1340CrossRefGoogle Scholar
  58. 58.
    Habekost M, Eisenhauer N, Scheu S, Steinbeiss S, Weigelt A et al (2008) Seasonal changes in the soil microbial community in a grassland plant diversity gradient four years after establishment. Soil Biol Biochem 40:2588–2595CrossRefGoogle Scholar
  59. 59.
    Le Roux X, Schmid B, Poly F, Barnard RL, Niklaus PA et al (2013) Soil environmental conditions and microbial build-up mediate the effect of plant diversity on soil nitrifying and denitrifying enzyme activities in temperate grasslands. PLoS One 8:e61069PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Nuccio EE, Anderson-Furgeson J, Estera KY, Pett-Ridge J, Valpine P et al (2016) Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology 97:1307–1318PubMedCrossRefGoogle Scholar
  61. 61.
    Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ et al (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci 111:13715–13720PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lankau RA (2011) Resistance and recovery of soil microbial communities in the face of Alliaria petiolata invasions. New Phytol 189:536–548PubMedCrossRefGoogle Scholar
  64. 64.
    Breulmann M, Schulz E, Weißhuhn K, Buscot F (2012) Impact of the plant community composition on labile soil organic carbon, soil microbial activity and community structure in semi-natural grassland ecosystems of different productivity. Plant Soil 352:253–265CrossRefGoogle Scholar
  65. 65.
    Lange M, Habekost M, Eisenhauer N, Roscher C, Bessler H et al (2014) Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland. PLoS One 9:e96182PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bressan M, Roncato M-A, Bellvert F, Comte G, el Zahar HF et al (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3:1243–1257PubMedCrossRefGoogle Scholar
  67. 67.
    Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM et al (2015) Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant-Microbe Interact 28:1049–1058PubMedCrossRefGoogle Scholar
  68. 68.
    Qin Y, Druzhinina IS, Pan X, Yuan Z (2016) Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol Adv 34:1245–1259PubMedCrossRefGoogle Scholar
  69. 69.
    Kaushal M, Wani SP (2016) Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agric Ecosyst Environ 231:68–78CrossRefGoogle Scholar
  70. 70.
    Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24PubMedCrossRefGoogle Scholar
  71. 71.
    Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462CrossRefGoogle Scholar
  72. 72.
    Arzanesh MH, Alikhani H, Khavazi K, Rahimian H, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197–205CrossRefGoogle Scholar
  73. 73.
    Armada E, Roldán A, Azcon R (2014) Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil. Microb Ecol 67:410–420PubMedCrossRefGoogle Scholar
  74. 74.
    Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200:558–569PubMedCrossRefGoogle Scholar
  75. 75.
    Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97:9155–9164PubMedCrossRefGoogle Scholar
  76. 76.
    Hussain MB, Zahir ZA, Asghar HN, Asghar M (2014) Can catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat. Int J Agric Biol 16:3–13Google Scholar
  77. 77.
    Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530CrossRefGoogle Scholar
  78. 78.
    Zahir Z, Munir A, Asghar H, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963PubMedGoogle Scholar
  79. 79.
    Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39CrossRefGoogle Scholar
  80. 80.
    Timmusk S, El-Daim IAA, Copolovici L, Tanilas T, Kännaste A et al (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:e96086PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Amellal N, Burtin G, Bartoli F, Heulin T (1998) Colonization of wheat rhizosphere by EPS producing Pantoea agglomerans and its effect on soil aggregation. Appl Environ Microbiol 64:3740–3747PubMedPubMedCentralGoogle Scholar
  82. 82.
    Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobiumsp. Strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14CrossRefGoogle Scholar
  84. 84.
    Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R et al (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017PubMedCrossRefGoogle Scholar
  85. 85.
    Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269PubMedCrossRefGoogle Scholar
  86. 86.
    Murphy B, Martin Nieto L, Doohan F, Hodkinson T (2015) Fungal endophytes enhance agronomically important traits in severely drought-stressed barley. J Agron Crop Sci 201:419–427CrossRefGoogle Scholar
  87. 87.
    Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940CrossRefGoogle Scholar
  88. 88.
    Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416PubMedCrossRefGoogle Scholar
  89. 89.
    Bae H, Sicher RC, Kim MS, Kim S-H, Strem MD et al (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  91. 91.
    Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68PubMedCrossRefGoogle Scholar
  92. 92.
    Shaharoona B, Arshad M, Zahir Z (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.) Lett Appl Microbiol 42:155–159PubMedCrossRefGoogle Scholar
  93. 93.
    Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554PubMedCrossRefGoogle Scholar
  94. 94.
    Bacon C, Hill N (1996) Symptomless grass endophytes: products of coevolutionary symbioses and their role in the ecological adaptations of grasses. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. American Phytopathologycal Society Press, St Paul, MN, pp 155–178Google Scholar
  95. 95.
    Marulanda A, Barea J-M, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124CrossRefGoogle Scholar
  96. 96.
    James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM et al (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906PubMedCrossRefGoogle Scholar
  97. 97.
    Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191Google Scholar
  98. 98.
    Hahn H, McManus MT, Warnstorff K, Monahan BJ, Young CA et al (2008) Neotyphodium fungal endophytes confer physiological protection to perennial ryegrass (Lolium perenne L.) subjected to a water deficit. Environ Exp Bot 63:183–199CrossRefGoogle Scholar
  99. 99.
    Augé RM (2000) Stomatal behavior of arbuscular mycorrhizal plants Arbuscular mycorrhizas: physiology and function. Springer, New York, NY, pp 201–237CrossRefGoogle Scholar
  100. 100.
    Duan X, Neuman DS, Reiber JM, Green CD, Saxton AM et al (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J Exp Bot 47:1541–1550CrossRefGoogle Scholar
  101. 101.
    Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417PubMedCrossRefGoogle Scholar
  102. 102.
    Sherameti I, Venus Y, Drzewiecki C, Tripathi S, Dan VM et al (2008) PYK10, a β-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant J 54:428–439PubMedCrossRefGoogle Scholar
  103. 103.
    Levitt J (1980) Responses of plants to environmental stresses Volume II Water, radiation, salt, and other stresses. Academic, Cambridge, MAGoogle Scholar
  104. 104.
    Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Subramanian KS, Charest C (1995) Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza 5:273–278CrossRefGoogle Scholar
  106. 106.
    Azcón R, Tobar RM (1998) Activity of nitrate reductase and glutamine synthetase in shoot and root of mycorrhizal Allium cepa: effect of drought stress. Plant Sci 133:1–8CrossRefGoogle Scholar
  107. 107.
    Tarafdar J (1996) The role of vesicular arbuscular mycorrhizal fungi on crop, tree and grasses grown in an arid environment. J Arid Environ 34:197–203CrossRefGoogle Scholar
  108. 108.
    Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42CrossRefGoogle Scholar
  109. 109.
    Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q et al (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275CrossRefGoogle Scholar
  110. 110.
    Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209–219PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Berg G, Grube M, Schloter M, Smalla K (2015) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148CrossRefGoogle Scholar
  112. 112.
    Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci 5:216PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M et al (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Venkatachalam Lakshmanan
    • 1
  • Prasun Ray
    • 1
  • Kelly D. Craven
    • 1
  1. 1.Plant Biology DivisionThe Samuel Roberts Noble FoundationArdmoreUSA

Personalised recommendations