Genome Editing of the Ascidian Ciona intestinalis with TALE Nuclease

  • Yasunori Sasakura
  • Keita Yoshida
  • Nicholas Treen
Part of the Methods in Molecular Biology book series (MIMB, volume 1630)


The ascidian Ciona intestinalis is an important model animal for studying developmental mechanisms for constructing the chordate body. Although molecular and embryological techniques for manipulating Ciona genes were developed a long time ago, recent achievements of genome editing in this animal have innovated functional analyses of genes in Ciona. Particularly, knockout of genes in the G0 generation coupled with tissue-specific expression of TALENs enables us to rapidly address gene functions that were difficult using previous methods.

Key words

Ascidian Ciona intestinalis Genome editing TALEN Knockout Electroporation 



We would like to thank Drs. Hiroshi Ochiai, Tetsushi Sakuma, and Takashi Yamamoto for their help to support our researches. This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and Ministry of Education, Culture, Sports, Science and Technology (MEXT) to Y.S. Y.S. was supported by the Toray Science and Technology Grant. Further support was provided by grants from the National Bioresource Project.


  1. 1.
    Lemaire P (2011) Evolutionary crossroads in developmental biology: the tunicates. Development 138:2143–2152CrossRefPubMedGoogle Scholar
  2. 2.
    Nishida H (2002) Patterning the marginal zone of early ascidian embryos: localized maternal mRNA and inductive interactions. BioEssays 24:613–624CrossRefGoogle Scholar
  3. 3.
    Ogura Y, Sasakura Y (2016) Developmental control of cell-cycle compensation provides a switch for patterned mitosis at the onset of chordate neurulation. Dev Cell 37:148–161CrossRefPubMedGoogle Scholar
  4. 4.
    Dehal P, Satou Y, Campbell RK et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167CrossRefPubMedGoogle Scholar
  5. 5.
    Satou Y, Yamada L, Mochizuki Y et al (2002) A cDNA resource from the basal chordate Ciona intestinalis. Genesis 33:153–154CrossRefPubMedGoogle Scholar
  6. 6.
    Satou Y, Mineta K, Ogasawara M et al (2008) Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and populations. Genome Res 9:R152Google Scholar
  7. 7.
    Satou Y, Imai KS, Satoh N (2001) Action of morpholinos in Ciona embryos. Genesis 30:103–106CrossRefPubMedGoogle Scholar
  8. 8.
    Sasakura Y, Kanda M, Ikeda T et al (2012) Retinoic acid-driven Hox1 is required in the epidermis for forming the otic/atrial placodes during ascidian metamorphosis. Development 139:2156–2160CrossRefPubMedGoogle Scholar
  9. 9.
    Corbo JC, Levine M, Zeller RW (1997) Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124:589–602PubMedGoogle Scholar
  10. 10.
    Zeller RW, Weldon DS, Pellatiro MA, Cone AC (2006) Optimized green fluorescent protein variants provide improved single cell resolution of transgene expression in ascidian embryos. Dev Dyn 235:456–467CrossRefPubMedGoogle Scholar
  11. 11.
    Bentrand V, Hudson C, Caillol D et al (2003) Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 115:615–627CrossRefGoogle Scholar
  12. 12.
    Joly JS, Kano S, Matsuoka T et al (2007) Culture of Ciona intestinalis in closed systems. Dev Dyn 236:1832–1840CrossRefPubMedGoogle Scholar
  13. 13.
    Sasakura Y, Awazu S, Chiba S, Satoh N (2003) Germ-line transgenesis of the Tc1/mariner superfamily transposon Minos in Ciona intestinalis. Proc Natl Acad Sci U S A 100:7726–7730CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sasakura Y, Awazu S, Chiba S et al (2003) Application of Minos, one of the Tc1/mariner superfamily transposable elements, to ascidian embryos as a tool for insertional mutagenesis. Gene 308:11–20CrossRefPubMedGoogle Scholar
  15. 15.
    Sasakura Y, Nakashima K, Awazu S et al (2005) Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis. Proc Natl Acad Sci U S A 102:15134–15139CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Meng X, Noyes MB, Zhu LJ et al (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ochiai H, Fujita K, Suzuki KI et al (2010) Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases. Genes Cells 15:875–885PubMedGoogle Scholar
  18. 18.
    Watanabe T, Ochiai H, Sakuma T et al (2012) Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nat Commun 3:1017CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kawai N, Ochiai H, Sakuma T et al (2012) Efficient targeted mutagenesis of the chordate Ciona intestinalis genome with zinc finger nucleases. Develop Growth Differ 54:535–545CrossRefGoogle Scholar
  20. 20.
    Treen N, Yoshida K, Sakuma T et al (2014) Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigate gene function in Ciona. Development 141:481–487CrossRefPubMedGoogle Scholar
  21. 21.
    Sasaki H, Yoshida K, Hozumi A, Sasakura Y (2014) CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis. Develop Growth Differ 56:499–510CrossRefGoogle Scholar
  22. 22.
    Stolfi A, Gandhi S, Salek F, Christiaen L (2014) Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9. Development 141:4115–4120CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sakuma T, Ochiai H, Kaneko T et al (2013) Repeated pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep 3:3379CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sasakura Y, Suzuki MM, Hozumi A et al (2010) Maternal factor-mediated epigenetic gene silencing in the ascidian Ciona intestinalis. Mol Gen Genomics 283:99–110CrossRefGoogle Scholar
  25. 25.
    Sakuma T, Hosoi S, Woltjen K et al (2013) Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells 18:315–326CrossRefPubMedGoogle Scholar
  26. 26.
    Ota S, Hisano Y, Muraki M et al (2013) Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18:450–458CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kawai N, Ogura Y, Ikuta T et al (2015) Hox10-regulated endodermal cell migration is essential for development of the ascidian intestine. Dev Biol 403:43–56CrossRefPubMedGoogle Scholar
  28. 28.
    Yoshida K, Treen N, Hozumi A et al (2014) Germ cell mutations of the ascidian Ciona intestinalis with TALE nucleases. Genesis 52:431–439CrossRefPubMedGoogle Scholar
  29. 29.
    Akanuma T, Hori S, Darras S, Nishida H (2002) Notch signaling is involved in neurogenesis in the ascidian embryos. Dev Genes Evol 212:459–472CrossRefPubMedGoogle Scholar
  30. 30.
    Satoh N, Rokhsar D, Nishikawa T (2014) Chordate evolution and the three-phylum system. Proc Biol Sci 281:20141729CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fujimura M, Takamura K (2000) Characterization of an ascidian DEAD-box gene, Ci-DEAD1: specific expression in the germ cells and its mRNA localization in the posterior-most blastomeres in early embryos. Dev Genes Evol 210:64–72CrossRefPubMedGoogle Scholar
  32. 32.
    Nishikata T, Yamada L, Mochizuki Y et al (2001) Profiles of maternally expressed genes in fertilized eggs of Ciona intestinalis. Dev Biol 238:315–331CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Yasunori Sasakura
    • 1
  • Keita Yoshida
    • 1
  • Nicholas Treen
    • 1
  1. 1.Shimoda Marine Research CenterUniversity of TsukubaShimodaJapan

Personalised recommendations