CRISPR-Cas9-Mediated Gene Editing in Mouse Spermatogonial Stem Cells

  • Yinghua Wang
  • Yifu Ding
  • Jinsong LiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1622)


Precise genome editing is a powerful tool for analysis of gene function. However, in spermatogonial stem cells (SSCs), this still remains a big challenge mainly due to low efficiency and complexity of currently available gene editing techniques. The CRISPR-Cas9 system from bacteria has been applied to modifying genome in different species at a very high efficiency and specificity. Here we describe CRISPR-Cas9-mediated gene editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in SSCs. This protocol provides guidelines for derivation of SSCs, nucleofection of SSCs with the CRISPR-Cas9 system, transplantation of the gene-modified SSCs into the recipient testes, and production of mice using transplanted SSC-derived round spermatids.

Key words

CRISPR-Cas9 Spermatogonial stem cells Transplantation Nucleofection Round spermatid injection (ROSI) Embryo transfer 



This study was supported by grants from the Ministry of Science and Technology of China (2014CB964803, 2015AA020307 and 2013CB967103), the National Natural Science Foundation of China (31530048 and 81672117), the Chinese Academy of Sciences (XDB19010204), and the Shanghai Municipal Commission for Science and Technology (16JC1420500).


  1. 1.
    Brinster RL, Avarbock MR (1994) Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A 91:11303–11307CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A 91:11298–11302CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kanatsu-Shinohara M, Muneto T, Lee J, Takenaka M, Chuma S, Nakatsuji N, Horiuchi T, Shinohara T (2008) Long-term culture of male germline stem cells from hamster testes. Biol Reprod 78:611–617CrossRefPubMedGoogle Scholar
  4. 4.
    Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, Shinohara T (2003) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 69:612–616CrossRefPubMedGoogle Scholar
  5. 5.
    Kubota H, Avarbock MR, Brinster RL (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 101:16489–16494CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dobrinski I (2008) Male germ cell transplantation. Reprod Domest Anim 43(Suppl 2):288–294CrossRefPubMedGoogle Scholar
  7. 7.
    Kubota H, Brinster RL (2006) Technology insight: in vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nat Clin Pract Endocrinol Metab 2:99–108CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Izsvak Z, Frohlich J, Grabundzija I, Shirley JR, Powell HM, Chapman KM, Ivics Z, Hamra FK (2010) Generating knockout rats by transposon mutagenesis in spermatogonial stem cells. Nat Methods 7:443–445CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kanatsu-Shinohara M, Ikawa M, Takehashi M, Ogonuki N, Miki H, Inoue K, Kazuki Y, Lee J, Toyokuni S, Oshimura M et al (2006) Production of knockout mice by random or targeted mutagenesis in spermatogonial stem cells. Proc Natl Acad Sci U S A 103:8018–8023CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Takehashi M, Kanatsu-Shinohara M, Inoue K, Ogonuki N, Miki H, Toyokuni S, Ogura A, Shinohara T (2007) Adenovirus-mediated gene delivery into mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 104:2596–2601CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kanatsu-Shinohara M, Toyokuni S, Shinohara T (2005) Genetic selection of mouse male germline stem cells in vitro: offspring from single stem cells. Biol Reprod 72:236–240CrossRefPubMedGoogle Scholar
  12. 12.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10:741–743CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W et al (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–843CrossRefPubMedGoogle Scholar
  17. 17.
    Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096CrossRefPubMedGoogle Scholar
  18. 18.
    Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659–662CrossRefPubMedGoogle Scholar
  19. 19.
    Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wei C, Liu J, Yu Z, Zhang B, Gao G, Jiao R (2013) TALEN or Cas9 - rapid, efficient and specific choices for genome modifications. J Genet Genomics 40:281–289CrossRefPubMedGoogle Scholar
  21. 21.
    Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wu Y, Zhou H, Fan X, Zhang Y, Zhang M, Wang Y, Xie Z, Bai M, Yin Q, Liang D et al (2015) Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res 25:67–79CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang M, Zhou H, Zheng C, Xiao J, Zuo E, Liu W, Xie D, Shi Y, Wu C, Wang H et al (2014) The roles of testicular C-kit positive cells in de novo morphogenesis of testis. Sci Rep 4:5936CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nagy N, Gertsenstein M, Vintersten K, Behringer R (2002) Manipulating the mouse embryo-a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  25. 25.
    Kubota H, Avarbock MR, Brinster RL (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 101:16489–16494CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kanatsu-Shinohara M, Morimoto H, Shinohara T (2012) Enrichment of mouse spermatogonial stem cells by melanoma cell adhesion molecule expression. Biol Reprod 87:139. doi: 10.1095/biolreprod.112.103861 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
  2. 2.School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina

Personalised recommendations