Advertisement

Endpoint Assessment in Rabbit Models of Invasive Pulmonary Aspergillosis and Mucormycosis

  • Vidmantas Petraitis
  • Ruta Petraitiene
  • William W. Hope
  • Thomas J. WalshEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1625)

Abstract

Multiple animal models have been developed to study the pathogenesis of invasive pulmonary aspergillosis, as well as to evaluate the efficacy, pharmacokinetics, and pharmacodynamics of various antifungal agents and vaccines. Each model is beneficial depending on the questions that are asked. In this chapter, we will discuss the endpoints assessment of the persistently neutropenic rabbit models of invasive pulmonary aspergillosis and invasive pulmonary mucormycosis.

Keywords

Aspergillosis Mucormycosis Endpoints Pulmonary PCR Galactomannan (1 → 3)-β-d-glucan 

References

  1. 1.
    Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ, Ito J, Andes DR, Baddley JW, Brown JM, Brumble LM, Freifeld AG, Hadley S, Herwaldt LA, Kauffman CA, Knapp K, Lyon GM, Morrison VA, Papanicolaou G, Patterson TF, Perl TM, Schuster MG, Walker R, Wannemuehler KA, Wingard JR, Chiller TM, Pappas PG (2010) Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: overview of the transplant-associated infection surveillance network (TRANSNET) database. Clin Infect Dis 50(8):1091–1100. doi: 10.1086/651263 CrossRefPubMedGoogle Scholar
  2. 2.
    Kosmidis C, Denning DW (2015) The clinical spectrum of pulmonary aspergillosis. Thorax 70(3):270–277. doi: 10.1136/thoraxjnl-2014-206291 CrossRefPubMedGoogle Scholar
  3. 3.
    Patterson TF (2009) Risk stratification for invasive aspergillosis: early assessment of host susceptibility. Med Mycol 47(Suppl 1):S255–S260. doi: 10.1080/13693780902718339 CrossRefPubMedGoogle Scholar
  4. 4.
    Rubio PM, Sevilla J, Gonzalez-Vicent M, Lassaletta A, Cuenca-Estrella M, Diaz MA, Riesco S, Madero L (2009) Increasing incidence of invasive aspergillosis in pediatric hematology oncology patients over the last decade: a retrospective single centre study. J Pediatr Hematol Oncol 31(9):642–646. doi: 10.1097/MPH.0b013e3181acd956 CrossRefPubMedGoogle Scholar
  5. 5.
    Walsh TJ, Bacher J, Pizzo PA (1988) Chronic Silastic central venous catheterization for induction, maintenance and support of persistent granulocytopenia in rabbits. Lab Anim Sci 38(4):467–471PubMedGoogle Scholar
  6. 6.
    Francis P, Lee JW, Hoffman A, Peter J, Francesconi A, Bacher J, Shelhamer J, Pizzo PA, Walsh TJ (1994) Efficacy of unilamellar liposomal amphotericin B in treatment of pulmonary aspergillosis in persistently granulocytopenic rabbits: the potential role of bronchoalveolar D-mannitol and serum galactomannan as markers of infection. J Infect Dis 169(2):356–368CrossRefPubMedGoogle Scholar
  7. 7.
    Petraitiene R, Petraitis V, Groll AH, Sein T, Piscitelli S, Candelario M, Field-Ridley A, Avila N, Bacher J, Walsh TJ (2001) Antifungal activity and pharmacokinetics of posaconazole (SCH 56592) in treatment and prevention of experimental invasive pulmonary aspergillosis: correlation with galactomannan antigenemia. Antimicrob Agents Chemother 45(3):857–869. doi: 10.1128/AAC.45.3.857-869.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Petraitis V, Petraitiene R, Groll AH, Bell A, Callender DP, Sein T, Schaufele RL, McMillian CL, Bacher J, Walsh TJ (1998) Antifungal efficacy, safety, and single-dose pharmacokinetics of LY303366, a novel echinocandin B, in experimental pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother 42(11):2898–2905PubMedPubMedCentralGoogle Scholar
  9. 9.
    Petraitis V, Petraitiene R, Hope WW, Meletiadis J, Mickiene D, Hughes JE, Cotton MP, Stergiopoulou T, Kasai M, Francesconi A, Schaufele RL, Sein T, Avila NA, Bacher J, Walsh TJ (2009) Combination therapy in treatment of experimental pulmonary aspergillosis: in vitro and in vivo correlations of the concentration- and dose-dependent interactions between anidulafungin and voriconazole by Bliss independence drug interaction analysis. Antimicrob Agents Chemother 53(6):2382–2391. doi: 10.1128/AAC.00329-09 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Petraitis V, Petraitiene R, Moradi PW, Strauss GE, Katragkou A, Kovanda LL, Hope WW, Walsh TJ (2016) Pharmacokinetics and concentration-dependent efficacy of isavuconazole for treatment of experimental invasive pulmonary aspergillosis. Antimicrob Agents Chemother 60(5):2718–2726. doi: 10.1128/AAC.02665-15 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Petraitis V, Petraitiene R, Sarafandi AA, Kelaher AM, Lyman CA, Casler HE, Sein T, Groll AH, Bacher J, Avila NA, Walsh TJ (2003) Combination therapy in treatment of experimental pulmonary aspergillosis: synergistic interaction between an antifungal triazole and an echinocandin. J Infect Dis 187(12):1834–1843. doi: 10.1086/375420 CrossRefPubMedGoogle Scholar
  12. 12.
    Petraitis V, Petraitiene R, Solomon J, Kelaher AM, Murray HA, Mya-San C, Bhandary AK, Sein T, Avila NA, Basevicius A, Bacher J, Walsh TJ (2006) Multidimensional volumetric imaging of pulmonary infiltrates for measuring therapeutic response to antifungal therapy in experimental invasive pulmonary aspergillosis. Antimicrob Agents Chemother 50(4):1510–1517. doi: 10.1128/AAC.50.4.1510-1517.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Petraitis V, Petraitiene R, Antachopoulos C, Hughes JE, Cotton MP, Kasai M, Harrington S, Gamaletsou MN, Bacher JD, Kontoyiannis DP, Roilides E, Walsh TJ (2013) Increased virulence of Cunninghamella bertholletiae in experimental pulmonary mucormycosis: correlation with circulating molecular biomarkers, sporangiospore germination and hyphal metabolism. Med Mycol 51(1):72–82. doi: 10.3109/13693786.2012.690107 CrossRefPubMedGoogle Scholar
  14. 14.
    Hope WW, Petraitis V, Petraitiene R, Aghamolla T, Bacher J, Walsh TJ (2010) The initial 96 hours of invasive pulmonary aspergillosis: histopathology, comparative kinetics of galactomannan and (1→3) beta-d-glucan and consequences of delayed antifungal therapy. Antimicrob Agents Chemother 54(11):4879–4886. doi: 10.1128/AAC.00673-10 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Petraitiene R, Petraitis V, Bacher JD, Finkelman MA, Walsh TJ (2015) Effects of host response and antifungal therapy on serum and BAL levels of galactomannan and (1→3)-beta-D-glucan in experimental invasive pulmonary aspergillosis. Med Mycol 53(6):558–568. doi: 10.1093/mmy/myv034 CrossRefPubMedGoogle Scholar
  16. 16.
    Francesconi A, Kasai M, Petraitiene R, Petraitis V, Kelaher AM, Schaufele R, Hope WW, Shea YR, Bacher J, Walsh TJ (2006) Characterization and comparison of galactomannan enzyme immunoassay and quantitative real-time PCR assay for detection of Aspergillus fumigatus in bronchoalveolar lavage fluid from experimental invasive pulmonary aspergillosis. J Clin Microbiol 44(7):2475–2480. doi: 10.1128/JCM.02693-05 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hope WW, Kruhlak MJ, Lyman CA, Petraitiene R, Petraitis V, Francesconi A, Kasai M, Mickiene D, Sein T, Peter J, Kelaher AM, Hughes JE, Cotton MP, Cotten CJ, Bacher J, Tripathi S, Bermudez L, Maugel TK, Zerfas PM, Wingard JR, Drusano GL, Walsh TJ (2007) Pathogenesis of Aspergillus fumigatus and the kinetics of galactomannan in an in vitro model of early invasive pulmonary aspergillosis: implications for antifungal therapy. J Infect Dis 195(3):455–466. doi: 10.1086/510535 CrossRefPubMedGoogle Scholar
  18. 18.
    Kovanda LL, Petraitiene R, Petraitis V, Walsh TJ, Desai A, Bonate P, Hope WW (2016) Pharmacodynamics of isavuconazole in experimental invasive pulmonary aspergillosis: implications for clinical breakpoints. J Antimicrob Chemother 71(7):1885–1891. doi: 10.1093/jac/dkw098 CrossRefPubMedGoogle Scholar
  19. 19.
    Petraitiene R, Petraitis V, Lyman CA, Groll AH, Mickiene D, Peter J, Bacher J, Roussillon K, Hemmings M, Armstrong D, Avila NA, Walsh TJ (2004) Efficacy, safety, and plasma pharmacokinetics of escalating dosages of intravenously administered ravuconazole lysine phosphoester for treatment of experimental pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother 48(4):1188–1196CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kasai M, Harrington SM, Francesconi A, Petraitis V, Petraitiene R, Beveridge MG, Knudsen T, Milanovich J, Cotton MP, Hughes J, Schaufele RL, Sein T, Bacher J, Murray PR, Kontoyiannis DP, Walsh TJ (2008) Detection of a molecular biomarker for zygomycetes by quantitative PCR assays of plasma, bronchoalveolar lavage, and lung tissue in a rabbit model of experimental pulmonary zygomycosis. J Clin Microbiol 46(11):3690–3702. doi: 10.1128/JCM.00917-08 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Petraitis V, Petraitiene R, Groll AH, Roussillon K, Hemmings M, Lyman CA, Sein T, Bacher J, Bekersky I, Walsh TJ (2002) Comparative antifungal activities and plasma pharmacokinetics of micafungin (FK463) against disseminated candidiasis and invasive pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother 46(6):1857–1869CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Groll AH, Gullick BM, Petraitiene R, Petraitis V, Candelario M, Piscitelli SC, Walsh TJ (2001) Compartmental pharmacokinetics of the antifungal echinocandin caspofungin (MK-0991) in rabbits. Antimicrob Agents Chemother 45(2):596–600. doi: 10.1128/AAC.45.2.596-600.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Groll AH, Lyman CA, Petraitis V, Petraitiene R, Armstrong D, Mickiene D, Alfaro RM, Schaufele RL, Sein T, Bacher J, Walsh TJ (2006) Compartmentalized intrapulmonary pharmacokinetics of amphotericin B and its lipid formulations. Antimicrob Agents Chemother 50(10):3418–3423. doi: 10.1128/AAC.00241-06 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Groll AH, Mickiene D, Petraitis V, Petraitiene R, Kelaher A, Sarafandi A, Wuerthwein G, Bacher J, Walsh TJ (2005) Compartmental pharmacokinetics and tissue distribution of the antifungal triazole ravuconazole following intravenous administration of its di-lysine phosphoester prodrug (BMS-379224) in rabbits. J Antimicrob Chemother 56(5):899–907. doi: 10.1093/jac/dki287 CrossRefPubMedGoogle Scholar
  25. 25.
    Groll AH, Mickiene D, Piscitelli SC, Walsh TJ (2000) Distribution of lipid formulations of amphotericin B into bone marrow and fat tissue in rabbits. Antimicrob Agents Chemother 44(2):408–410CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Groll AH, Mickiene D, Werner K, Piscitelli SC, Walsh TJ (1999) High-performance liquid chromatographic determination of liposomal nystatin in plasma and tissues for pharmacokinetic and tissue distribution studies. J Chromatogr B Biomed Sci Appl 735(1):51–62CrossRefPubMedGoogle Scholar
  27. 27.
    Groll AH, Sein T, Petraitis V, Petraitiene R, Callender D, Gonzalez CE, Giri N, Bacher J, Piscitelli S, Walsh TJ (1998) Compartmental pharmacokinetics and tissue drug distribution of the pradimicin derivative BMS 181184 in rabbits. Antimicrob Agents Chemother 42(10):2700–2705PubMedPubMedCentralGoogle Scholar
  28. 28.
    Lee JW, Amantea MA, Francis PA, Navarro EE, Bacher J, Pizzo PA, Walsh TJ (1994) Pharmacokinetics and safety of a unilamellar liposomal formulation of amphotericin B (AmBisome) in rabbits. Antimicrob Agents Chemother 38(4):713–718CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Walsh TJ, Foulds G, Pizzo PA (1989) Pharmacokinetics and tissue penetration of fluconazole in rabbits. Antimicrob Agents Chemother 33(4):467–469CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Walsh TJ, Jackson AJ, Lee JW, Amantea M, Sein T, Bacher J, Zech L (2000) Dose-dependent pharmacokinetics of amphotericin B lipid complex in rabbits. Antimicrob Agents Chemother 44(8):2068–2076CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Neely MN, van Guilder MG, Yamada WM, Schumitzky A, Jelliffe RW (2012) Accurate detection of outliers and subpopulations with Pmetrics, a nonparametric and parametric pharmacometric modeling and simulation package for R. Ther Drug Monit 34(4):467–476. doi: 10.1097/FTD.0b013e31825c4ba6 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Walsh TJ, Garrett K, Feurerstein E, Girton M, Allende M, Bacher J, Francesconi A, Schaufele R, Pizzo PA (1995) Therapeutic monitoring of experimental invasive pulmonary aspergillosis by ultrafast computerized tomography, a novel, noninvasive method for measuring responses to antifungal therapy. Antimicrob Agents Chemother 39(5):1065–1069CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Walsh TJ, Wissel MC, Grantham KJ, Petraitiene R, Petraitis V, Kasai M, Francesconi A, Cotton MP, Hughes JE, Greene L, Bacher JD, Manna P, Salomoni M, Kleiboeker SB, Reddy SK (2011) Molecular detection and species-specific identification of medically important Aspergillus species by real-time PCR in experimental invasive pulmonary aspergillosis. J Clin Microbiol 49(12):4150–4157. doi: 10.1128/JCM.00570-11 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Vidmantas Petraitis
    • 1
  • Ruta Petraitiene
    • 1
  • William W. Hope
    • 2
  • Thomas J. Walsh
    • 1
    • 3
    • 4
    • 5
    • 6
    Email author
  1. 1.Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of MedicineWeill Cornell Medicine of Cornell UniversityNew YorkUSA
  2. 2.Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
  3. 3.Department of PediatricsWeill Cornell Medicine of Cornell UniversityNew YorkUSA
  4. 4.Department of Microbiology and ImmunologyWeill Cornell Medicine of Cornell UniversityNew YorkUSA
  5. 5.The Henry Schueler FoundationChicagoUSA
  6. 6.Weill Cornell Medical CenterNew YorkUSA

Personalised recommendations