Detection and Analyses of Endocytosis of Plant Receptor Kinases

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1621)

Abstract

Genetic dissection has led to a sophisticated understanding of receptor kinases in plant development and responses to abiotic and biotic stresses. Fluorescence confocal microscopy is essential to identify the (sub)cellular locations of resting and signaling receptor kinases that trigger molecular events in plant cells upon ligand perception. In this regard, the internalization of plasma membrane-localized FLAGELLIN SENSING 2 (FLS2) into endosomes induced by its ligand flg22, a peptide derived from bacterial flagellin, is a model system for studying activation status-dependent and endosomal receptor kinase trafficking routes and can be used in screens to identify pathogen effectors that target these trafficking routes for virulence promotion. In this chapter we describe approaches of visualizing fluorescently tagged FLS2, including protocols for flg22-induced endocytosis, instrument parameters, and image analysis. These approaches can be easily adapted for other receptor kinases, using the fast transient expression system in Nicotiana benthamiana for microscopic inspection.

Key words

Confocal microscopy Live-cell imaging FLS2 Flagellin flg22 Endocytosis Nicotiana benthamiana 

References

  1. 1.
    Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60(1):379–406CrossRefPubMedGoogle Scholar
  2. 2.
    Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428(6984):764–767CrossRefPubMedGoogle Scholar
  3. 3.
    Chinchilla D (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500CrossRefPubMedGoogle Scholar
  4. 4.
    Beck M, Zhou J, Faulkner C, MacLean D, Robatzek S (2012) Spatio-temporal cellular dynamics of the arabidopsis flagellin receptor reveal activation status-dependent endosomal sorting. Plant Cell 24(10):4205–4219CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Frescatada-Rosa M, Robatzek S, Kuhn H (2015) Should I stay or should I go? Traffic control for plant pattern recognition receptors. Curr Opin Plant Biol 28:23–29CrossRefPubMedGoogle Scholar
  6. 6.
    Liebrand TWH, van den Berg GCM, Zhang Z, Smit P, Cordewener JHG, America AHP, Sklenar J, Jones AME, Tameling WIL, Robatzek S, Thomma BPHJ, Joosten MHAJ (2013) Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc Natl Acad Sci U S A 110(24):10010–10015CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Peng K-C, Wang C-W, Wu C-H, Huang C-T, Liou R-F (2015) Tomato SOBIR1/EVR homologs are involved in elicitin perception and plant defense against the oomycete pathogen Phytophthora parasitica. Mol Plant-Microbe Interact 28(8):913–926CrossRefPubMedGoogle Scholar
  8. 8.
    Mbengue M, Bourdais G (2016) Clathrin-dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases. Proc Natl Acad Sci U S A 113(39):11034–11039CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    TO B, Belhaj K, Dagdas YF, Chaparro-Garcia A, Wu C-H, Cano LM, Kamoun S (2015) Rerouting of plant late endocytic trafficking toward a pathogen interface. Traffic 16(2):204–226CrossRefGoogle Scholar
  10. 10.
    Postma J, Liebrand TWH, Bi G, Evrard A, Bye RR, Mbengue M, Kuhn H, Joosten MHAJ, Robatzek S (2016) Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity. New Phytol 210(2):627–642CrossRefPubMedGoogle Scholar
  11. 11.
    TO B, Schornack S, Win J, Shindo T, Ilyas M, Oliva R, Cano LM, Jones AME, Huitema E, van der Hoorn RAL, Kamoun S (2011) Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc Natl Acad Sci U S A 108(51):20832–20837CrossRefGoogle Scholar
  12. 12.
    Chaparro-Garcia A, Schwizer S, Sklenar J, Yoshida K, Petre B, Bos JIB, Schornack S, Jones AME, TO B, Kamoun S (2015) Phytophthora infestans RXLR-WY effector AVR3a associates with dynamin-related protein 2 required for endocytosis of the plant pattern recognition receptor FLS2. PLoS One 10(9):e0137071CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, Tabassum N, Cruz-Mireles N, Hughes RK, Sklenar J, Win J, Menke F, Findlay K, Banfield MJ, Kamoun S, TO B (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856. doi: 10.7554/eLife.10856 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20(5):537–542CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Choi SW, Tamaki T, Ebine K, Uemura T, Ueda T, Nakano A (2013) RABA members act in distinct steps of subcellular trafficking of the FLAGELLIN SENSING2 receptor. Plant Cell 25(3):1174–1187CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Spallek T, Beck M, Ben Khaled S, Salomon S, Bourdais G, Schellmann S, Robatzek S (2013) ESCRT-I mediates FLS2 Endosomal sorting and plant immunity. PLoS Genet 9(12):e1004035. doi: 10.1371/journal.pgen.1004035 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dettmer J, Hong-Hermesdorf A, Stierhof Y-D, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18(3):715–730CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Geldner N (2009) Cell polarity in plants; a PARspective on PINs. Curr Opin Plant Biol 12(1):42–48CrossRefPubMedGoogle Scholar
  19. 19.
    Smith JM, Leslie ME, Robinson SJ, Korasick DA, Zhang T, Backues SK, Cornish PV, Koo AJ, Bednarek SY, Heese A (2014) Loss of Arabidopsis thaliana Dynamin-related protein 2b reveals separation of innate immune signaling pathways. PLoS Pathog 10(12):e1004578. doi: 10.1371/journal.ppat.1004578 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ntoukakis V, Schwessinger B, Segonzac C, Zipfel C (2011) Cautionary notes on the use of C-terminal BAK1 fusion proteins for functional studies. Plant Cell 23(11):3871–3878CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ding S-W, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130(3):413–426CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lu Y-J, Schornack S, Spallek T, Geldner N, Chory J, Schellmann S, Schumacher K, Kamoun S, Robatzek S (2012) Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking. Cell Microbiol 14(5):682–697CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.The Sainsbury LaboratoryNorwichUK

Personalised recommendations