The Use of FRET/FLIM to Study Proteins Interacting with Plant Receptor Kinases

  • Stefanie Weidtkamp-PetersEmail author
  • Yvonne StahlEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1621)


The investigation of protein interactions in living plant tissue has become of increasing importance in recent years. A high spatial and temporal resolution for the observation of in vivo protein interaction is needed, e.g., in order to follow changes of plant receptor kinase interactions and complex formation over time. In vivo fluorescence or Förster resonance energy transfer (FRET) measurements allow for detailed analyses of interacting proteins in their natural environment at a subcellular level. Especially FRET-FLIM (fluorescence lifetime imaging microscopy) measurements provide an extremely powerful and reliable tool meeting the demands for investigating in vivo protein interaction quantitatively and with high precision. Here, we will describe in detail how to practically perform in vivo FRET measurements of receptor kinases in plants and discuss potential pitfalls and points of consideration.

Key words

FRET APB FLIM Fluorescent proteins Protein interaction 



We acknowledge the Deutsche Forschungsgesellschaft (DFG) for financial support to Y.S. by grant STA12/12 1-1 and S.W.P. by grant WE53/43 1-1. We are thankful to Steffen Köhler for taking photographs of N. benthamiana leaves and Rüdiger Simon for critical reading of the manuscript.


  1. 1.
    Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 6(2):55–75CrossRefGoogle Scholar
  2. 2.
    Albertazzi L, Arosio D, Marchetti L et al (2009) Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair. Photochem Photobiol 85(1):287–297CrossRefPubMedGoogle Scholar
  3. 3.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer Science+Business Media LLC, Boston, MACrossRefGoogle Scholar
  4. 4.
    Karpova TS, Baumann CT, He L et al (2003) Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J Microscopy 209:56–70CrossRefGoogle Scholar
  5. 5.
    Widengren J, Terry B, Rigler R (1999) Protonation kinetics of GFP and FITC investigated by FCS — aspects of the use of fluorescent indicators for measuring pH. Chem Phys 249(2–3):259–271CrossRefGoogle Scholar
  6. 6.
    Biskup C, Zimmer T, Kelbauskas L et al (2007) Multi-dimensional fluorescence lifetime and FRET measurements. Microsc Res Tech 70(5):442–451CrossRefPubMedGoogle Scholar
  7. 7.
    Stahl Y, Grabowski S, Bleckmann A et al (2013) Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. Curr Biol 23(5):362–371CrossRefPubMedGoogle Scholar
  8. 8.
    Bücherl CA, van Esse GW, Kruis A et al (2013) Visualization of BRI1 and BAK1 (SERK3) membrane receptor heterooligomers during. Plant Physiol 162(4):1911–1925CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Somssich M, Ma Q, Weidtkamp-Peters S et al (2015) Real-time dynamics of peptide ligand-dependent receptor complex formation in planta. Sci Signal 8(388):ra76CrossRefPubMedGoogle Scholar
  10. 10.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909CrossRefPubMedGoogle Scholar
  11. 11.
    Piston DW, Kremers G (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32(9):407–414CrossRefPubMedGoogle Scholar
  12. 12.
    Bleckmann A, Weidtkamp-Peters S, Seidel CAM et al (2010) Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol 152(1):166–176CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Weidtkamp-Peters S, Felekyan S, Bleckmann A et al (2009) Multiparameter fluorescence image spectroscopy to study molecular interactions. Photochem Photobiol Sci 8(4):470–480CrossRefPubMedGoogle Scholar
  14. 14.
    Boens N, Qin W, Basarić N et al (2007) Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal Chem 79(5):2137–2149CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Center for Advanced Imaging (CAi)Heinrich-Heine UniversityDüsseldorfGermany
  2. 2.Institute for Developmental GeneticsHeinrich-Heine UniversityDüsseldorfGermany

Personalised recommendations