In Vitro Assessment of Guanylyl Cyclase Activity of Plant Receptor Kinases

Part of the Methods in Molecular Biology book series (MIMB, volume 1621)


Cyclic nucleotides such as 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are increasingly recognized as key signaling molecules in plants, and a growing number of plant mononucleotide cyclases, both adenylate cyclases (ACs) and guanylate cyclases (GCs), have been reported. Catalytically active cytosolic GC domains have been shown to be part of many plant receptor kinases and hence directly linked to plant signaling and downstream cellular responses. Here we detail, firstly, methods to identify and express essential functional GC domains of receptor kinases, and secondly, we describe mass spectrometric methods to quantify cGMP generated by recombinant GCs from receptor kinases in vitro.

Key words

Cyclic nucleotides Nucleotide cyclase Guanylate cyclase cGMP HPLC Tandem mass spectrometry 



We are grateful to the KAUST Analytical Core Lab for supporting this project.


  1. 1.
    Ludidi N, Gehring C (2003) Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J Biol Chem 278:6490–6494CrossRefPubMedGoogle Scholar
  2. 2.
    Gehring C (2010) Adenyl cyclases and cAMP in plant signaling – past and present. Cell Commun Signal 8:15CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Marondedze C, Wong A, Thomas L, Irving H, Gehring C (2016) Cyclic nucleotide monophosphates in plants and plant signaling. Handb Exp Pharmacol (in press) doi: 10.1007/164_2015_35
  4. 4.
    Pharmawati M, Billington T, Gehring CA (1998) Stomatal guard cell responses to kinetin and natriuretic peptides are cGMP-dependent. Cell Mol Life Sci 54:272–276CrossRefPubMedGoogle Scholar
  5. 5.
    Ederli L, Meier S, Borgogni A, Reale L, Ferranti F, Gehring C, Pasqualini S (2008) cGMP in ozone and NO dependent responses. Plant Signal Behav 3:36–37CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hoshi T (1995) Regulation of voltage dependence of the KAT1 channel by intracellular factors. J Gen Physiol 105:309–328CrossRefPubMedGoogle Scholar
  7. 7.
    Ordoñez NM, Marondedze C, Thomas L, Pasqualini S, Shabala L, Shabala S, Gehring C (2014) Cyclic mononucleotides modulate potassium and calcium flux responses to H2O2 in Arabidopsis roots. FEBS Lett 588:1008–1015CrossRefPubMedGoogle Scholar
  8. 8.
    Zelman AK, Dawe A, Gehring C, Berkowitz GA (2012) Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Front Plant Sci 3:95CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Marondedze C, Groen AJ, Thomas L, Lilley KS, Gehring C (2016) A quantitative phosphoproteome analysis of cGMP-dependent cellular responses in Arabidopsis thaliana. Mol Plant 9:621–623CrossRefPubMedGoogle Scholar
  10. 10.
    Meier S, Ruzvidzo O, Morse M, Donaldson L, Kwezi L, Gehring C (2010) The Arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes. PLoS One 5:e8904CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kwezi L, Meier S, Mungur L, Ruzvidzo O, Irving H, Gehring C (2007) The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PLoS One 2:e449CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kwezi L, Ruzvidzo O, Wheeler JI, Govender K, Iacuone S, Thompson PE, Gehring C, Irving HR (2011) The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants. J Biol Chem 286:22580–22588CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y, Ryan CA, Berkowitz GA (2010) Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Natl Acad Sci U S A 107:21193–21198CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Turek I, Gehring C (2016) The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling. Plant Mol Biol 91(3):275–286CrossRefPubMedGoogle Scholar
  15. 15.
    Muleya V, Wheeler JI, Irving HR (2013) Structural and functional characterization of receptor kinases with nucleotide cyclase activity. Methods Mol Biol 1016:175–194CrossRefPubMedGoogle Scholar
  16. 16.
    Freihat L, Muleya V, Manallack DT, Wheeler JI, Irving HR (2014) Comparison of moonlighting guanylate cyclases: roles in signal direction? Biochem Soc Trans 42:1773–1779CrossRefPubMedGoogle Scholar
  17. 17.
    Muleya V, Wheeler JI, Ruzvidzo O, Freihat L, Manallack DT, Gehring C, Irving HR (2014) Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1. Cell Commun Signal 12:60CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Meier S, Seoighe C, Kwezi L, Irving H, Gehring C (2007) Plant nucleotide cyclases: an increasingly complex and growing family. Plant Signal Behav 2:536–539CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wong A, Gehring C (2013) The Arabidopsis thaliana proteome harbors undiscovered multi-domain molecules with functional guanylyl cyclase catalytic centers. Cell Commun Signal 11:48CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Van Damme T, Zhang Y, Lynen F, Sandra P (2012) Determination of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in human plasma and animal tissues by solid phase extraction on silica and liquid chromatography-triple quadrupole mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 909:14–21CrossRefPubMedGoogle Scholar
  21. 21.
    Martens-Lobenhoffer J, Dautz C, Bode-Boger SM (2010) Improved method for the determination of cyclic guanosine monophosphate (cGMP) in human plasma by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 878:487–491CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang Y, Dufield D, Klover J, Li W, Szekely-Klepser G, Lepsy C, Sadagopan N (2009) Development and validation of an LC-MS/MS method for quantification of cyclic guanosine 3′,5′-monophosphate (cGMP) in clinical applications: a comparison with a EIA method. J Chromatogr B Analyt Technol Biomed Life Sci 877:513–520CrossRefPubMedGoogle Scholar
  23. 23.
    Oeckl P, Ferger B (2012) Simultaneous LC-MS/MS analysis of the biomarkers cAMP and cGMP in plasma, CSF and brain tissue. J Neurosci Methods 203:338–343CrossRefPubMedGoogle Scholar
  24. 24.
    Witters E, van Dongen W, Esmans EL, van Onckelen HA (1997) Ion-pair liquid chromatography-electrospray mass spectrometry for the analysis of cyclic nucleotides. J Chromatogr B Biomed Sci Appl 694:55–63CrossRefPubMedGoogle Scholar
  25. 25.
    Jia X, Fontaine BM, Strobel F, Weinert EE (2014) A facile and sensitive method for quantification of cyclic nucleotide monophosphates in mammalian organs: basal levels of eight cNMPs and identification of 2′,3′-cIMP. Biomol Ther 4:1070–1092Google Scholar
  26. 26.
    Goutier W, Spaans PA, van der Neut MA, McCreary AC, Reinders JH (2010) Development and application of an LC-MS/MS method for measuring the effect of (partial) agonists on cAMP accumulation in vitro. J Neurosci Methods 188:24–31CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Analytical Core Laboratory4700 King Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
  2. 2.Division of Biological & Environmental Science & Engineering4700 King Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia

Personalised recommendations