Skip to main content

A Novel Platform for High-Throughput Gene Synthesis to Maximize Recombinant Expression in Escherichia coli

  • Protocol
  • First Online:
PCR

Abstract

Gene synthesis is becoming an important tool in many fields of recombinant DNA technology, including recombinant protein production. De novo gene synthesis is quickly replacing the classical cloning and mutagenesis procedures and allows generating nucleic acids for which no template is available. Here, we describe a high-throughput platform to design and produce multiple synthetic genes (<500 bp) for recombinant expression in Escherichia coli. This pipeline includes an innovative codon optimization algorithm that designs DNA sequences to maximize heterologous protein production in different hosts. The platform is based on a simple gene synthesis method that uses a PCR-based protocol to assemble synthetic DNA from pools of overlapping oligonucleotides. This technology incorporates an accurate, automated and cost-effective ligase-independent cloning step to directly integrate the synthetic genes into an effective E. coli expression vector. High-throughput production of synthetic genes is of increasing relevance to allow exploring the biological function of the extensive genomic and meta-genomic information currently available from various sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoover DM, Lubkowski J (2002) DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res 30:e43

    Article  Google Scholar 

  2. Stemmer WP, Crameri A, Ha KD et al (1995) Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164:49–53

    Article  CAS  Google Scholar 

  3. Strizhov N, Keller M, Mathur J et al (1996) A synthetic cryIC gene, encoding a bacillus thuringiensis delta-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc Natl Acad Sci U S A 93:15012–15017

    Article  CAS  Google Scholar 

  4. Xiong A-S, Yao Q-H, Peng R-H et al (2004) A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res 32:e98–e98. doi:10.1093/nar/gnh094

    Article  Google Scholar 

  5. Xiong A-S, Yao Q-H, Peng R-H et al (2006) PCR-based accurate synthesis of long DNA sequences. Nat Protoc 1:791–797. doi:10.1038/nprot.2006.103

    Article  CAS  Google Scholar 

  6. Gordeeva TL, Borschevskaya LN, Sineoky SP (2010) Improved PCR-based gene synthesis method and its application to the Citrobacter freundii phytase gene codon modification. J Microbiol Methods 81:147–152. doi:10.1016/j.mimet.2010.02.013

    Article  CAS  Google Scholar 

  7. Wu G, Wolf JB, Ibrahim AF et al (2006) Simplified gene synthesis: a one-step approach to PCR-based gene construction. J Biotechnol 124:496–503. doi:10.1016/j.jbiotec.2006.01.015

    Article  CAS  Google Scholar 

  8. Tian J, Ma K, Saaem I (2009) Advancing high-throughput gene synthesis technology. Mol BioSyst 5:714. doi:10.1039/b822268c

    Article  CAS  Google Scholar 

  9. Ma S, Saaem I, Tian J (2012) Error correction in gene synthesis technology. Trends Biotechnol 30:147–154. doi:10.1016/j.tibtech.2011.10.002

    Article  CAS  Google Scholar 

  10. Saaem I, Ma S, Quan J, Tian J (2012) Error correction of microchip synthesized genes using surveyor nuclease. Nucleic Acids Res 40:1–8. doi:10.1093/nar/gkr887

    Article  Google Scholar 

  11. Sequeira AF, Guerreiro CIPD, Vincentelli R, Fontes CMGA (2016) T7 endonuclease I mediates error correction in artificial Gene synthesis. Mol Biotechnol. doi:10.1007/s12033-016-9957-7

    Google Scholar 

  12. Welch M, Govindarajan S, Ness JE et al (2009) Design parameters to control synthetic Gene expression in Escherichia coli. PLoS One 4:e7002. doi:10.1371/journal.pone.0007002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Filipa Sequeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sequeira, A.F., Brás, J.L.A., Fernandes, V.O., Guerreiro, C.I.P.D., Vincentelli, R., Fontes, C.M.G.A. (2017). A Novel Platform for High-Throughput Gene Synthesis to Maximize Recombinant Expression in Escherichia coli . In: Domingues, L. (eds) PCR. Methods in Molecular Biology, vol 1620. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7060-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7060-5_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7059-9

  • Online ISBN: 978-1-4939-7060-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics