Mass Spectrometry-Based Serum Proteomics for Biomarker Discovery and Validation

  • Santosh D. Bhosale
  • Robert Moulder
  • Petri Kouvonen
  • Riitta Lahesmaa
  • David R. Goodlett
Part of the Methods in Molecular Biology book series (MIMB, volume 1619)


Blood protein measurements are used frequently in the clinic in the assessment of patient health. Nevertheless, there remains the need for new biomarkers with better diagnostic specificities. With the advent of improved technology for bioanalysis and the growth of biobanks including collections from specific disease risk cohorts, the plasma proteome has remained a target of proteomics research toward the characterization of disease-related biomarkers. The following protocol presents a workflow for serum/plasma proteomics including details of sample preparation both with and without immunoaffinity depletion of the most abundant plasma proteins and methodology for selected reaction monitoring mass spectrometry validation.

Key words

Serum/plasma Label-free quantification Selected reaction monitoring Proteomics Mass spectrometry 



The National Technology Agency of Finland (Finland Distinguished Professor Programme, grant 40398/11), the Academy of Finland (Centre of Excellence in Molecular Systems Immunology and Physiology Research, grant 250114), JDRF, the Sigrid Jusélius Foundation, and Biocentre Finland (Turku Proteomics Facility) are thanked for their financial support.


  1. 1.
    Veenstra TD, Conrads TP, Hood BL, Avellino AM, Ellenbogen RG, Morrison RS (2005) Biomarkers: mining the biofluid proteome. Mol Cell Proteomics 4:409–418CrossRefPubMedGoogle Scholar
  2. 2.
    Lyons TJ, Basu A (2012) Biomarkers in diabetes: hemoglobin A1c, vascular and tissue markers. Transl Res 159:303–312CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Crutchfield CA, Thomas SN, Sokoll LJ, Chan DW (2016) Advances in mass spectrometry-based clinical biomarker discovery. Clin Proteomics 13:1CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dayon L, Kussmann M (2013) Proteomics of human plasma: a critical comparison of analytical workflows in terms of effort, throughput and outcome. EuPA Open Proteom 1:8–16CrossRefGoogle Scholar
  5. 5.
    Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983CrossRefPubMedGoogle Scholar
  6. 6.
    Surinova S, Schiess R, Hüttenhain R, Cerciello F, Wollscheid B, Aebersold R (2011) On the development of plasma protein biomarkers. J Proteome Res 10:5–16CrossRefPubMedGoogle Scholar
  7. 7.
    Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9:555–566CrossRefPubMedGoogle Scholar
  8. 8.
    Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:222CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Escher C, Reiter L, MacLean B, Ossola R, Herzog F, Chilton J, MacCoss MJ, Rinner O (2012) Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 12(8):1111–1121CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Issaq HJ, Xiao Z, Veenstra TD (2007) Serum and plasma proteomics. Chem Rev 107(8):3601–3620CrossRefPubMedGoogle Scholar
  11. 11.
    Tu C, Rudnick PA, Martinez MY, Cheek KL, Stein SE, Slebos RJ, Liebler DC (2010) Depletion of abundant plasma proteins and limitations of plasma proteomics. J Proteome Res 9(10):4982–4991CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Geyer PE, Kulak NA, Pichler G, Holdt LM, Teupser D, Mann M (2016) Plasma proteome profiling to assess human health and disease. Cell Syst 2(3):185–195CrossRefPubMedGoogle Scholar
  13. 13.
    Ahmed N, Barker G, Oliva K, Garfin D, Talmadge K, Georgiou H, Quinn M, Rice G (2003) An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum. Proteomics 3(10):1980–1987CrossRefPubMedGoogle Scholar
  14. 14.
    Smith MP, Wood SL, Zougman A, Ho JT, Peng J, Jackson D, Cairns DA, Lewington AJ, Selby PJ, Banks RE (2011) A systematic analysis of the effects of increasing degrees of serum immunodepletion in terms of depth of coverage and other key aspects in top-down and bottom-up proteomic analyses. Proteomics 11(11):2222–2235CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Moulder R, Goo YA, Goodlett DR (2016) Label-free quantitation for clinical proteomics. Methods Mol Biol 1410:65–76CrossRefPubMedGoogle Scholar
  16. 16.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372CrossRefPubMedGoogle Scholar
  17. 17.
    Megger DA, Bracht T, Kohl M, Ahrens M, Naboulsi W, Weber F, Hoffmann AC, Stephan C, Kuhlmann K, Eisenacher M, Schlaak JF, Baba HA, Meyer HE, Sitek B (2013) Proteomic differences between hepatocellular carcinoma and nontumorous liver tissue investigated by a combined gel-based and label-free quantitative proteomics study. Mol Cell Proteomics 12:2006–2020CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:794–1805CrossRefGoogle Scholar
  19. 19.
    Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740CrossRefPubMedGoogle Scholar
  20. 20.
    Tyanova S, Mann M, Cox J (2014) MaxQuant for in-depth analysis of large SILAC datasets. Methods Mol Biol 1188:351–364CrossRefPubMedGoogle Scholar
  21. 21.
    Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    R Development Core Team (2011) R: a language and environment for statistical computing, Vienna, AustriaGoogle Scholar
  23. 23.
    IBM Corp. Released 2013. IBM SPSS statistics for windows version 22.0. IBM Corp., Armonk, NYGoogle Scholar
  24. 24.
    MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Brusniak MK, Kwok S, Christiansen M, Campbell D, Reiter L, Picotti P, Kusebauch U, Ramos H, Deutsch EW, Chen J, Moritz RL, Aebersold R (2011) ATAQS: A computational software tool for high throughput transition optimization and validation for selected reaction monitoring mass spectrometry. BMC Bioinformatics 12:78CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Teleman J, Karlsson C, Waldemarson S, Hansson K, James P, Malmström J, Levander F (2012) Automated selected reaction monitoring software for accurate label-free protein quantification. J Proteome Res 11(7):3766–3773CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Aiyetan P, Thomas SN, Zhang Z, Zhang H (2015) MRMPlus: an open source quality control and assessment tool for SRM/MRM assay development. BMC Bioinformatics 16:411CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Santosh D. Bhosale
    • 1
  • Robert Moulder
    • 1
  • Petri Kouvonen
    • 1
  • Riitta Lahesmaa
    • 1
  • David R. Goodlett
    • 1
    • 2
  1. 1.Turku Centre for BiotechnologyUniversity of TurkuTurkuFinland
  2. 2.Department of Pharmaceutical ScienceUniversity of MarylandBaltimoreUSA

Personalised recommendations