Advertisement

High-Density Serum/Plasma Reverse Phase Protein Arrays

  • Cecilia Hellström
  • Tea Dodig-Crnković
  • Mun-Gwan Hong
  • Jochen M. Schwenk
  • Peter Nilsson
  • Ronald Sjöberg
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1619)

Abstract

In-depth exploration and characterization of human serum and plasma proteomes is an attractive strategy for the identification of potential prognostic or diagnostic biomarkers. The possibility of analyzing larger numbers of samples in a high-throughput fashion has markedly increased with affinity-based microarrays, thus providing higher statistical power to these biomarker studies. Here, we describe a protocol for high-density serum and plasma reverse phase protein arrays (RPPAs). We demonstrate how a biobank of 12,392 samples was immobilized and analyzed on a single microarray slide, allowing high-quality profiling of abundant target proteins across all samples in one assay.

Key words

Reverse phase protein array RPPA Serum Plasma Affinity proteomics Noncontact inkjet printer Protein profiling Fluorescent detection 

Notes

Acknowledgment

We thank the Swedish Twin Registry for providing the serum samples. We also thank all members of the Plasma Profiling and the Auoimmunity Profiling groups at SciLifeLab, as well as the entire staff of the Human Protein Atlas. This study was funded by grants from Science for Life Laboratory, the Knut and Alice Wallenberg Foundation, and the KTH Center for Applied Proteomics (KCAP) funded by the Erling-Persson Family Foundation. The authors declare no conflict of interest.

References

  1. 1.
    Aguilar-Mahecha A, Hassan S, Ferrario C, Basik M (2006) Microarrays as validation strategies in clinical samples: tissue and protein microarrays. OMICS 10:311–326. doi: 10.1089/omi.2006.10.311 CrossRefPubMedGoogle Scholar
  2. 2.
    Paweletz CP, Charboneau L, Bichsel VE et al (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20:1981–1989. doi: 10.1038/sj.onc.1204265 CrossRefPubMedGoogle Scholar
  3. 3.
    Caiazzo RJ, Maher AJ, Drummond MP et al (2009) Protein microarrays as an application for disease biomarkers. Proteomics Clin Appl 3:138–147. doi: 10.1002/prca.200800149 CrossRefPubMedGoogle Scholar
  4. 4.
    Ahmed F, Gyorgy A, Kamnaksh A et al (2012) Time-dependent changes of protein biomarker levels in the cerebrospinal fluid after blast traumatic brain injury. Electrophoresis 33:3705–3711. doi: 10.1002/elps.201200299 CrossRefPubMedGoogle Scholar
  5. 5.
    Janzi M, Odling J, Pan-Hammarström Q et al (2005) Serum microarrays for large scale screening of protein levels. Mol Cell Proteomics 4:1942–1947. doi: 10.1074/mcp.M500213-MCP200 CrossRefPubMedGoogle Scholar
  6. 6.
    Janzi M, Sjöberg R, Wan J et al (2009) Screening for C3 deficiency in newborns using microarrays. PLoS One 4:e5321. doi: 10.1371/journal.pone.0005321 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Aguilar-Mahecha A, Cantin C, O’Connor-McCourt M et al (2009) Development of reverse phase protein microarrays for the validation of clusterin, a mid-abundant blood biomarker. Proteome Sci 7:15. doi: 10.1186/1477-5956-7-15 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kobayashi M, Nagashio R, Jiang SX et al (2015) Calnexin is a novel sero-diagnostic marker for lung cancer. Lung Cancer 90:342–345. doi: 10.1016/j.lungcan.2015.08.015 CrossRefPubMedGoogle Scholar
  9. 9.
    Solier C, Langen H (2014) Antibody-based proteomics and biomarker research—current status and limitations. Proteomics 14:774–783. doi: 10.1002/pmic.201300334 CrossRefPubMedGoogle Scholar
  10. 10.
    Ayoglu B, Häggmark A, Neiman M et al (2011) Systematic antibody and antigen-based proteomic profiling with microarrays. Expert Rev Mol Diagn 11:219–234. doi: 10.1586/erm.10.110 CrossRefPubMedGoogle Scholar
  11. 11.
    Akbani R, Carragher N, Goldstein T et al (2014) Realizing the promise of reverse phase protein arrays for clinical, translational and basic research: a workshop report. Mol Cell Proteomics 13:1625–1643CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bordeaux J, Welsh AW, Agarwal S et al (2010) Antibody validation. BioTechniques 48:197–209. doi: 10.2144/000113382 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sauer U (2011) Impact of substrates for probe immobilization. In: Korf U (ed) Protein microarrays: methods and protocols, Methods in molecular biology, vol 785. Springer Science+Business Media, LLC: Humana Press, Heidelberg, Germany, pp 363–378CrossRefGoogle Scholar
  14. 14.
    Tighe P, Negm O, Todd I, Fairclough L (2013) Utility, reliability and reproducibility of immunoassay multiplex kits. Methods 61:23–29. doi: 10.1016/j.ymeth.2013.01.003 CrossRefPubMedGoogle Scholar
  15. 15.
    Mcwilliam I, Kwan MC, Hall D (2011) Inkjet printing for the production of protein microarrays. In: Korf U (ed) Protein microarrays: methods and protocols, Methods in molecular biology, vol 785. Springer Science+Business Media, LLC: Humana Press, Heidelberg, Germany, pp 345–361CrossRefGoogle Scholar
  16. 16.
    Tisone TC, Tonkinson JL (2005) Non-contact dispensing for protein microarrays. In: Schena M (ed) Protein microarrays. Jones and Bartlett Publishers, Sudbury, MA, pp 169–185Google Scholar
  17. 17.
    Magnusson PKE, Almqvist C, Rahman I et al (2013) The Swedish twin registry: establishment of a biobank and other recent developments. Twin Res Hum Genet 16:317–329. doi: 10.1017/thg.2012.104 CrossRefPubMedGoogle Scholar
  18. 18.
    Uhlén M, Björling E, Agaton C et al (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4:1920–1932. doi: 10.1074/mcp.M500279-MCP200 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Cecilia Hellström
    • 1
  • Tea Dodig-Crnković
    • 1
  • Mun-Gwan Hong
    • 1
  • Jochen M. Schwenk
    • 2
  • Peter Nilsson
    • 1
  • Ronald Sjöberg
    • 1
  1. 1.Affinity Proteomics, School of BiotechnologySciLifeLab, KTH—Royal Institute of TechnologyStockholmSweden
  2. 2.Affinity Proteomics, SciLifeLab, School of BiotechnologyKTH – Royal Institute of TechnologySolnaSweden

Personalised recommendations