MALDI-MSI of Lipids in Human Skin

  • Philippa J. HartEmail author
  • Malcolm R. Clench
Part of the Methods in Molecular Biology book series (MIMB, volume 1618)


Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is now a well-established technique for imaging analysis of sectioned biological tissues. One of the growing areas of interest is in the analysis of skin. MALDI-MSI can provide a wealth of information from within sections of skin. This includes information on the distribution of pharmaceuticals following topical treatments, through to the examination of the composition of different skin layers and studies of proteomic, lipidomic, and metabolomic responses to disease, wounds, and external stimuli. Here, we describe the handling procedures, preparatory treatment, and mass spectrometry setup required for the MALDI MSI analysis of lipids within human skin samples.

Key words

MALDI MS MSI Imaging Skin Lipids 



This work was supported by the Biomolecular Sciences Research Centre of Sheffield Hallam University.


  1. 1.
    Enthaler B, Pruns JK, Wessel S, Rapp C, Fischer M, Wittern KP (2012) Improved sample preparation for MALDI–MSI of endogenous compounds in skin tissue sections and mapping of exogenous active compounds subsequent to ex-vivo skin penetration. Anal Bioanal Chem 402(3):1159–1167CrossRefPubMedGoogle Scholar
  2. 2.
    Sahle FF, Gebre-Mariam T, Dobner B, Wohlrab J, Neubert RHH (2015) Skin diseases associated with the depletion of stratum corneum lipids and stratum corneum lipid substitution therapy. Skin Pharmacol Physiol 28:42–55CrossRefPubMedGoogle Scholar
  3. 3.
    Roy S, Touboul D, Brunelle A, Germain DP, Prognon P, Laprévote O, Chaminade P (2006) Imaging mass spectrometry: a new tool for the analysis of skin biopsy. Application in Fabry’s disease. Ann Pharm Fr 64(5):328–334CrossRefPubMedGoogle Scholar
  4. 4.
    Doering T, Hollerans WM, Potratz A, Vielhaber G, Elias PM, Suzuki K, Sandhoff K (1999) Sphingolipid activator proteins are required for epidermal permeability barrier formation. J Biol Chem 274(16):11038–11045CrossRefPubMedGoogle Scholar
  5. 5.
    Fujiwaki T, Yamaguchi S, Sukegawa K, Taketomi T (2002) Application of delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry for analysis of sphingolipids in skin fibroblasts from sphingolipidosis patients. Brain Dev 24:170–173CrossRefPubMedGoogle Scholar
  6. 6.
    Bartke N, Hannun YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50:591–596Google Scholar
  7. 7.
    Chalfant CE, Spiegel S (2005) Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signalling. J Cell Sci 118:4605–4612CrossRefPubMedGoogle Scholar
  8. 8.
    Pettus BJ, Bielawska A, Subramanian P, Wijesinghe DS, Maceyka M, Leslie CC, Evans JH, Freiberg J, Roddy P, Hannun YA, Chalfant CE (2004) Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J Biol Chem 279:11320–11326CrossRefPubMedGoogle Scholar
  9. 9.
    Taverna D, Pollins AC, Sindona G, Caprioli RM, Nanney LB (2016) Imaging mass spectrometry for accessing molecular changes during burn wound healing. Wound Repair Regen 24(5):775–785. [epub ahead of print]CrossRefPubMedGoogle Scholar
  10. 10.
    Calvano CD, Carulli S (2009) Aniline/α-cyano-4-hydroxycinnamic acid is a highly versatile ionic liquid for matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 23(11):1659–1668CrossRefPubMedGoogle Scholar
  11. 11.
    Hart PJ, Francese S, Claude E, Woodroofe MN, Clench MR (2011) MALDI-MS imaging of lipids in ex vivo human skin. Anal Bioanal Chem 401:115–125CrossRefPubMedGoogle Scholar
  12. 12.
    Mitchell CA, Long H, Donaldson M, Francese S, Clench MR (2015) Lipid changes within the epidermis of living skin equivalents observed across a time-course by MALDI-MS imaging and profiling. Lipids Health Dis 14(84):1–12Google Scholar
  13. 13.
    Angel PM, Spraggins JM, Baldwin HS, Caprioli R (2012) Enhanced sensitivity for high spatial resolution lipid analysis by negative ion mode matrix assisted laser desorption ionization imaging mass spectrometry. Anal Chem 84:1557–1564CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jackson SN, Wang HJ, Woods AS (2005) In situ structural characterisation of phosphatidylcholines in brain tissue using MALDI-MS/MS. J Am Soc Mass Spectrom 16:2052–2056CrossRefPubMedGoogle Scholar
  15. 15.
    Thomas A, Charbonneau JL, Fournaise E, Chaurand P (2012) Sublimation of new matrix candidates for high spatial resolution imaging mass spectrometry of lipids: enhanced information in both positive and negative polarities after 1, 5-Diaminonapthalene deposition. Anal Chem 84(4):2048–2054CrossRefPubMedGoogle Scholar
  16. 16.
    Cerruti CD, Benabdellah F, Laprevote O, Touboul D, Brunelle A (2012) MALDI imaging and structural analysis of rat brain lipid negative ions with 9-aminoacridine matrix. Anal Chem 84:2164–2171CrossRefPubMedGoogle Scholar
  17. 17.
    Fonville JM, Carter C, Cloarec O, Nicholson JK, Lindon JC, Bunch J, Holmes E (2012) Robust data processing and normalisation strategy for MALDI mass spectrometric imaging. Anal Chem 84:1310–1319CrossRefPubMedGoogle Scholar
  18. 18.
    Hart PJ (2012) MALDI-MS investigation of skin and its response to irritants and sensitisers. PhD Thesis, Sheffield Hallam University, SheffieldGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Waters CorporationWilmslowUK
  2. 2.Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK

Personalised recommendations