Advertisement

Defining Lipoprotein Localisation by Fluorescence Microscopy

  • Maria Guillermina Casabona
  • Mylène Robert-Genthon
  • Didier Grunwald
  • Ina Attrée
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1615)

Abstract

In recent years it has become evident that lipoproteins play crucial roles in the assembly of bacterial envelope-embedded nanomachineries and in the processes of protein export/secretion. In this chapter we describe a method to determine their precise localisation, for example inner versus outer membrane, in Gram-negative bacteria using human opportunistic pathogen Pseudomonas aeruginosa as a model. A fusion protein between a given putative lipoprotein and the red fluorescent protein mCherry must be created and expressed in a strain expressing cytoplasmic green fluorescent protein (GFP). Then the peripheral localisation of the fusion protein in the cell can be examined by treating cells with lysozyme to create spheroplasts and monitoring fluorescence under a confocal microscope. Mutants in the signal peptide can be engineered to study the association with the membrane and efficiency of transport. This protocol can be adapted to monitor lipoprotein localisation in other Gram-negative bacteria.

Key words

Lipoprotein Localisation Cell envelope Spheroplasts Bacterial secretion Fluorescence microscopy 

Notes

Acknowledgements

We thank Dr. K. M. Sall for initiating studies on TagQ and TssJ1 fusion proteins and Dr. S. Elsen for help in plasmid generation. MGC was supported by a PhD grant from the French Cystic Fibrosis Association Vaincre la Mucovisidose. The microscopy facility is supported by the Biosciences and Biotechnology Institute of Grenoble (BIG), CEA-Grenoble and the grant to Laboratoire of Excellence, LabEx GRAL (ANR-10-LABX-49-01).

References

  1. 1.
    Farris C, Sanowar S, Bader MW, Pfuetzner R, Miller SI (2010) Antimicrobial peptides activate the Rcs regulon through the outer membrane lipoprotein RcsF. J Bacteriol 192(19):4894–4903CrossRefGoogle Scholar
  2. 2.
    Leverrier P, Declercq JP, Denoncin K, Vertommen D, Hiniker A, Cho SH et al (2011) Crystal structure of the outer membrane protein RcsF, a new substrate for the periplasmic protein-disulfide isomerase DsbC. J Biol Chem 286(19):16734–16742CrossRefGoogle Scholar
  3. 3.
    Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD et al (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285(5428):736–739CrossRefGoogle Scholar
  4. 4.
    Pugsley AP (1993) The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57(1):50–108PubMedPubMedCentralGoogle Scholar
  5. 5.
    Zuckert WR (2014) Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 1843(8):1509–1516CrossRefGoogle Scholar
  6. 6.
    Konovalova A, Silhavy TJ (2015) Outer membrane lipoprotein biogenesis: Lol is not the end. Philos Trans R Soc Lond Ser B Biol Sci 370(1679)Google Scholar
  7. 7.
    Babu MM, Priya ML, Selvan AT, Madera M, Gough J, Aravind L et al (2006) A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol 188(8):2761–2773CrossRefGoogle Scholar
  8. 8.
    Madan Babu M, Sankaran K (2002) DOLOP--database of bacterial lipoproteins. Bioinformatics 18(4):641–643CrossRefGoogle Scholar
  9. 9.
    Remans K, Vercammen K, Bodilis J, Cornelis P (2010) Genome-wide analysis and literature-based survey of lipoproteins in Pseudomonas aeruginosa. Microbiology 156(Pt 9):2597–2607CrossRefGoogle Scholar
  10. 10.
    Casabona MG, Vandenbrouck Y, Attree I, Coute Y (2013) Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane. Proteomics 13(16):2419–2423CrossRefGoogle Scholar
  11. 11.
    Fernandez D, Dang TA, Spudich GM, Zhou XR, Berger BR, Christie PJ (1996) The Agrobacterium tumefaciens virB7 gene product, a proposed component of the T-complex transport apparatus, is a membrane-associated lipoprotein exposed at the periplasmic surface. J Bacteriol 178(11):3156–3167CrossRefGoogle Scholar
  12. 12.
    Fernandez D, Spudich GM, Zhou XR, Christie PJ (1996) The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J Bacteriol 178(11):3168–3176CrossRefGoogle Scholar
  13. 13.
    Christie PJ, Cascales E (2005) Structural and dynamic properties of bacterial type IV secretion systems (review). Mol Membr Biol 22(1–2):51–61CrossRefGoogle Scholar
  14. 14.
    Collin S, Guilvout I, Nickerson NN, Pugsley AP (2011) Sorting of an integral outer membrane protein via the lipoprotein-specific Lol pathway and a dedicated lipoprotein pilotin. Mol Microbiol 80(3):655–665CrossRefGoogle Scholar
  15. 15.
    Izore T, Perdu C, Job V, Attree I, Faudry E, Dessen A (2011) Structural characterization and membrane localization of ExsB from the type III secretion system (T3SS) of Pseudomonas aeruginosa. J Mol Biol 413(1):236–246CrossRefGoogle Scholar
  16. 16.
    Perdu C, Huber P, Bouillot S, Blocker A, Elsen S, Attree I et al (2015) ExsB is required for correct assembly of the Pseudomonas aeruginosa type III secretion apparatus in the bacterial membrane and full virulence in vivo. Infect Immun 83(5):1789–1798CrossRefGoogle Scholar
  17. 17.
    Guilvout I, Chami M, Engel A, Pugsley AP, Bayan N (2006) Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin. EMBO J 25(22):5241–5249CrossRefGoogle Scholar
  18. 18.
    Viarre V, Cascales E, Ball G, Michel GP, Filloux A, Voulhoux R (2009) HxcQ liposecretin is self-piloted to the outer membrane by its N-terminal lipid anchor. J Biol Chem 284(49):33815–33823CrossRefGoogle Scholar
  19. 19.
    Aschtgen MS, Bernard CS, De Bentzmann S, Lloubes R, Cascales E (2008) SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol 190(22):7523–7531CrossRefGoogle Scholar
  20. 20.
    Casabona MG, Silverman JM, Sall KM, Boyer F, Coute Y, Poirel J et al (2013) An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas Aeruginosa. Environ Microbiol 15(2):471–486CrossRefGoogle Scholar
  21. 21.
    Durand E, Nguyen VS, Zoued A, Logger L, Pehau-Arnaudet G, Aschtgen MS et al (2015) Biogenesis and structure of a type VI secretion membrane core complex. Nature 523(7562):555–560CrossRefGoogle Scholar
  22. 22.
    Felisberto-Rodrigues C, Durand E, Aschtgen MS, Blangy S, Ortiz-Lombardia M, Douzi B et al (2011) Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog 7(11):e1002386CrossRefGoogle Scholar
  23. 23.
    Rao VA, Shepherd SM, English G, Coulthurst SJ, Hunter WN (2011) The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system. Acta Crystallogr Sect D 67(Pt 12):1065–1072CrossRefGoogle Scholar
  24. 24.
    Basler M, Ho BT, Mekalanos JJ (2013) Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152(4):884–894CrossRefGoogle Scholar
  25. 25.
    Alcock F, Baker MA, Greene NP, Palmer T, Wallace MI, Berks BC (2013) Live cell imaging shows reversible assembly of the TatA component of the twin-arginine protein transport system. Proc Natl Acad Sci U S A 110(38):E3650–E3659CrossRefGoogle Scholar
  26. 26.
    Guillon L, El Mecherki M, Altenburger S, Graumann PL, Schalk IJ (2012) High cellular organization of pyoverdine biosynthesis in Pseudomonas aeruginosa: clustering of PvdA at the old cell pole. Environ Microbiol 14(8):1982–1994CrossRefGoogle Scholar
  27. 27.
    Imperi F, Visca P (2013) Subcellular localization of the pyoverdine biogenesis machinery of Pseudomonas aeruginosa: a membrane-associated “siderosome”. FEBS Lett 587(21):3387–3391CrossRefGoogle Scholar
  28. 28.
    Lewenza S, Mhlanga MM, Pugsley AP (2008) Novel inner membrane retention signals in Pseudomonas aeruginosa lipoproteins. J Bacteriol 190(18):6119–6125CrossRefGoogle Scholar
  29. 29.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682CrossRefGoogle Scholar
  30. 30.
    De Bentzmann S, Giraud C, Bernard CS, Calderon V, Ewald F, Plesiat P et al (2012) Unique biofilm signature, drug susceptibility and decreased virulence in Drosophila through the Pseudomonas aeruginosa two-component system PprAB. PLoS Pathog 8(11):e1003052CrossRefGoogle Scholar
  31. 31.
    Thibault J, Faudry E, Ebel C, Attree I, Elsen S (2009) Anti-activator ExsD forms a 1:1 complex with ExsA to inhibit transcription of type III secretion operons. J Biol Chem 284(23):15762–15770CrossRefGoogle Scholar
  32. 32.
    Hoang TT, Kutchma AJ, Becher A, Schweizer HP (2000) Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43(1):59–72CrossRefGoogle Scholar
  33. 33.
    Newman JR, Fuqua C (1999) Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227(2):197–203CrossRefGoogle Scholar
  34. 34.
    Chuanchuen R, Narasaki CT, Schweizer HP (2002) Benchtop and microcentrifuge preparation of Pseudomonas aeruginosa competent cells. Biotechniques 33(4):760. 2–3PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Maria Guillermina Casabona
    • 1
    • 2
  • Mylène Robert-Genthon
    • 1
  • Didier Grunwald
    • 1
  • Ina Attrée
    • 1
  1. 1.Bacterial Pathogenesis and Cellular Responses, Centre National pour la Recherche Scientifique (CNRS), University Grenoble Alpes, INSERM, Biosciences and Biotechnology Institut, CEA GrenobleGrenobleFrance
  2. 2.Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeUK

Personalised recommendations