Bacterial Protein Secretion Systems pp 23-57 | Cite as
Protein Sorting Prediction
Protocol
First Online:
Abstract
Many computational methods are available for predicting protein sorting in bacteria. When comparing them, it is important to know that they can be grouped into three fundamentally different approaches: signal-based, global-property-based and homology-based prediction. In this chapter, the strengths and drawbacks of each of these approaches is described through many examples of methods that predict secretion, integration into membranes, or subcellular locations in general. The aim of this chapter is to provide a user-level introduction to the field with a minimum of computational theory.
Key words
Protein sorting Subcellular location Secretion Transmembrane proteins Prediction Machine learningReferences
- 1.Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132PubMedCrossRefGoogle Scholar
- 2.von Heijne G (1983) Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133:17–21CrossRefGoogle Scholar
- 3.Gardy JL, Laird MR, Chen F et al (2005) PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21:617–623PubMedCrossRefGoogle Scholar
- 4.Rey S, Gardy J, Brinkman F (2005) Assessing the precision of high-throughput computational and laboratory approaches for the genome-wide identification of protein subcellular localization in bacteria. BMC Genomics 6:162PubMedPubMedCentralCrossRefGoogle Scholar
- 5.Nielsen H (2016) Predicting subcellular localization of proteins by bioinformatic algorithms. In: Bagnoli F, Rappuoli R (eds) Protein export in gram-positive bacteria. Current topics in microbiology and immunology. Springer, Berlin, HeidelbergGoogle Scholar
- 6.Nakashima H, Nishikawa K (1994) Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies. J Mol Biol 238:54–61PubMedCrossRefGoogle Scholar
- 7.Andrade MA, O’Donoghue SI, Rost B (1998) Adaptation of protein surfaces to subcellular location. J Mol Biol 276:517–525PubMedCrossRefGoogle Scholar
- 8.Reinhardt A, Hubbard T (1998) Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res 26:2230–2236PubMedPubMedCentralCrossRefGoogle Scholar
- 9.Hua S, Sun Z (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17:721–728PubMedCrossRefGoogle Scholar
- 10.Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389PubMedPubMedCentralCrossRefGoogle Scholar
- 11.The UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212CrossRefGoogle Scholar
- 12.Nair R, Rost B (2002a) Sequence conserved for subcellular localization. Protein Sci 11:2836–2847PubMedPubMedCentralCrossRefGoogle Scholar
- 13.Yu C-S, Chen Y-C, Lu C-H, Hwang J-K (2006) Prediction of protein subcellular localization. Proteins 64:643–651PubMedCrossRefGoogle Scholar
- 14.Nair R, Rost B (2002b) Inferring sub-cellular localization through automated lexical analysis. Bioinformatics 18(Suppl 1):S78–S86PubMedCrossRefGoogle Scholar
- 15.Lu Z, Szafron D, Greiner R et al (2004) Predicting subcellular localization of proteins using machine-learned classifiers. Bioinformatics 20:547–556PubMedCrossRefGoogle Scholar
- 16.Shatkay H, Höglund A, Brady S et al (2007) SherLoc: high-accuracy prediction of protein subcellular localization by integrating text and protein sequence data. Bioinformatics 23:1410–1417PubMedCrossRefGoogle Scholar
- 17.Briesemeister S, Blum T, Brady S et al (2009) SherLoc2: a high-accuracy hybrid method for predicting subcellular localization of proteins. J Proteome Res 8:5363–5366PubMedCrossRefGoogle Scholar
- 18.Chou K-C, Shen H-B (2010) Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms. Nat Sci 2:1090–1103Google Scholar
- 19.Chou K-C, Shen H-B (2006) Large-scale predictions of gram-negative bacterial protein subcellular locations. J Proteome Res 5:3420–3428PubMedCrossRefGoogle Scholar
- 20.Shen H-B, Chou K-C (2007) Gpos-PLoc: an ensemble classifier for predicting subcellular localization of gram-positive bacterial proteins. Protein Eng Des Sel 20:39–46PubMedCrossRefGoogle Scholar
- 21.Shen H-B, Chou K-C (2010) Gneg-mPLoc: a top-down strategy to enhance the quality of predicting subcellular localization of gram-negative bacterial proteins. J Theor Biol 264:326–333PubMedCrossRefGoogle Scholar
- 22.Shen H-B, Chou K-C (2009) Gpos-mPLoc: a top-down approach to improve the quality of predicting subcellular localization of gram-positive bacterial proteins. Protein Pept Lett 16:1478–1484PubMedCrossRefGoogle Scholar
- 23.Xiao X, Wu Z-C, Chou K-C (2011) A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. PLoS One 6:e20592PubMedPubMedCentralCrossRefGoogle Scholar
- 24.Wu Z-C, Xiao X, Chou K-C (2012) iLoc-Gpos: a multi-layer classifier for predicting the subcellular localization of singleplex and multiplex gram-positive bacterial proteins. Protein Pept Lett 19:4–14PubMedCrossRefGoogle Scholar
- 25.Stormo GD, Schneider TD, Gold L, Ehrenfeucht A (1982) Use of the “perceptron” algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Res 10:2997–3011PubMedPubMedCentralCrossRefGoogle Scholar
- 26.Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100PubMedPubMedCentralCrossRefGoogle Scholar
- 27.Krogh A, Brown M, Mian IS et al (1994) Hidden Markov models in computational biology: applications to protein modeling. J Mol Biol 235:1501–1531PubMedCrossRefGoogle Scholar
- 28.Sigrist CJA, de Castro E, Cerutti L et al (2013) New and continuing developments at PROSITE. Nucleic Acids Res 41:D344–D347PubMedCrossRefGoogle Scholar
- 29.Finn RD, Bateman A, Clements J et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230PubMedCrossRefGoogle Scholar
- 30.Haft DH, Selengut JD, Richter RA et al (2013) TIGRFAMs and genome properties in 2013. Nucleic Acids Res 41:D387–D395PubMedCrossRefGoogle Scholar
- 31.Mitchell A, Chang H-Y, Daugherty L et al (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43:D213–D221PubMedCrossRefGoogle Scholar
- 32.Rish I (2001) An empirical study of the naive Bayes classifier. In: IJCAI 2001 workshop Empir Methods Artif Intell. IBM, New York, pp 41–46Google Scholar
- 33.Szafron D, Lu P, Greiner R et al (2004) Proteome analyst: custom predictions with explanations in a web-based tool for high-throughput proteome annotations. Nucleic Acids Res 32:W365–W371PubMedPubMedCentralCrossRefGoogle Scholar
- 34.Briesemeister S, Rahnenführer J, Kohlbacher O (2010) Going from where to why—interpretable prediction of protein subcellular localization. Bioinformatics 26:1232–1238PubMedPubMedCentralCrossRefGoogle Scholar
- 35.Hertz JA, Krogh AS, Palmer RG (1991) Introduction to the theory of neural computation. Westview Press, Redwood City, CAGoogle Scholar
- 36.Noble WS (2006) What is a support vector machine? Nat Biotechnol 24:1565–1567PubMedCrossRefGoogle Scholar
- 37.Hobohm U, Scharf M, Schneider R, Sander C (1992) Selection of representative protein data sets. Protein Sci 1:409–417PubMedPubMedCentralCrossRefGoogle Scholar
- 38.Höglund A, Dönnes P, Blum T et al (2006) MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics 22:1158–1165PubMedCrossRefGoogle Scholar
- 39.Sander C, Schneider R (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9:56–68PubMedCrossRefGoogle Scholar
- 40.Nielsen H, Engelbrecht J, von Heijne G, Brunak S (1996) Defining a similarity threshold for a functional protein sequence pattern: the signal peptide cleavage site. Proteins 24:165–177PubMedCrossRefGoogle Scholar
- 41.Nielsen H, Wernersson R (2006) An overabundance of phase 0 introns immediately after the start codon in eukaryotic genes. BMC Genomics 7:256PubMedPubMedCentralCrossRefGoogle Scholar
- 42.Gardy JL, Spencer C, Wang K et al (2003) PSORT-B: improving protein subcellular localization prediction for gram-negative bacteria. Nucleic Acids Res 31:3613–3617PubMedPubMedCentralCrossRefGoogle Scholar
- 43.Baldi P, Brunak S, Chauvin Y et al (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16:412–424PubMedCrossRefGoogle Scholar
- 44.Gorodkin J (2004) Comparing two K-category assignments by a K-category correlation coefficient. Comput Biol Chem 28:367–374PubMedCrossRefGoogle Scholar
- 45.von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690CrossRefGoogle Scholar
- 46.McGeoch DJ (1985) On the predictive recognition of signal peptide sequences. Virus Res 3:271–286PubMedCrossRefGoogle Scholar
- 47.von Heijne G, Abrahmsén L (1989) Species-specific variation in signal peptide design: implications for protein secretion in foreign hosts. FEBS Lett 244:439–446CrossRefGoogle Scholar
- 48.Nielsen H, Brunak S, Engelbrecht J, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6PubMedCrossRefGoogle Scholar
- 49.Nielsen H, Krogh A (1998) Prediction of signal peptides and signal anchors by a hidden Markov model. Proc Int Conf Intell Syst Mol Biol 6:122–130PubMedGoogle Scholar
- 50.Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795PubMedCrossRefGoogle Scholar
- 51.Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786PubMedCrossRefGoogle Scholar
- 52.Menne KML, Hermjakob H, Apweiler R (2000) A comparison of signal sequence prediction methods using a test set of signal peptides. Bioinformatics 16:741–742PubMedCrossRefGoogle Scholar
- 53.Klee E, Ellis L (2005) Evaluating eukaryotic secreted protein prediction. BMC Bioinformatics 6:1–7CrossRefGoogle Scholar
- 54.Choo K, Tan T, Ranganathan S (2009) A comprehensive assessment of N-terminal signal peptides prediction methods. BMC Bioinformatics 10:S2PubMedPubMedCentralCrossRefGoogle Scholar
- 55.Zhang X, Li Y, Li Y (2009) Evaluating signal peptide prediction methods for gram-positive bacteria. Biologia (Bratisl) 64:655–659Google Scholar
- 56.Hiller K, Grote A, Scheer M et al (2004) PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res 32:W375–W379PubMedPubMedCentralCrossRefGoogle Scholar
- 57.Gomi M, Sonoyama M, Mitaku S (2004) High performance system for signal peptide prediction: SOSUIsignal. Chem-Bio Inform J 4:142–147CrossRefGoogle Scholar
- 58.Frank K, Sippl MJ (2008) High-performance signal peptide prediction based on sequence alignment techniques. Bioinformatics 24:2172–2176PubMedCrossRefGoogle Scholar
- 59.Broome-Smith JK, Gnaneshan S, Hunt LA et al (1994) Cleavable signal peptides are rarely found in bacterial cytoplasmic membrane proteins. Mol Membr Biol 11:3–8PubMedCrossRefGoogle Scholar
- 60.Juncker AS, Willenbrock H, von Heijne G et al (2003) Prediction of lipoprotein signal peptides in gram-negative bacteria. Protein Sci 12:1652–1662PubMedPubMedCentralCrossRefGoogle Scholar
- 61.Rahman O, Cummings SP, Harrington DJ, Sutcliffe IC (2008) Methods for the bioinformatic identification of bacterial lipoproteins encoded in the genomes of gram-positive bacteria. World J Microbiol Biotechnol 24:2377–2382CrossRefGoogle Scholar
- 62.Fariselli P, Finocchiaro G, Casadio R (2003) SPEPlip: the detection of signal peptide and lipoprotein cleavage sites. Bioinformatics 19:2498–2499PubMedCrossRefGoogle Scholar
- 63.Bagos PG, Tsirigos KD, Liakopoulos TD, Hamodrakas SJ (2008) Prediction of lipoprotein signal peptides in gram-positive bacteria with a hidden Markov model. J Proteome Res 7:5082–5093PubMedCrossRefGoogle Scholar
- 64.Cristóbal S, de Gier J-W, Nielsen H, von Heijne G (1999) Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J 18:2982–2990PubMedPubMedCentralCrossRefGoogle Scholar
- 65.Rose RW, Brüser T, Kissinger JC, Pohlschröder M (2002) Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45:943–950PubMedCrossRefGoogle Scholar
- 66.Bendtsen JD, Nielsen H, Widdick D et al (2005a) Prediction of twin-arginine signal peptides. BMC Bioinformatics 6:167PubMedPubMedCentralCrossRefGoogle Scholar
- 67.Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD (2010) Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics 26:2811–2817PubMedCrossRefGoogle Scholar
- 68.Binnewies TT, Bendtsen JD, Hallin PF et al (2005) Genome update: protein secretion systems in 225 bacterial genomes. Microbiology 151:1013–1016PubMedCrossRefGoogle Scholar
- 69.Desvaux M, Hébraud M, Talon R, Henderson IR (2009) Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17:139–145PubMedCrossRefGoogle Scholar
- 70.Bendtsen JD, Kiemer L, Fausbøll A, Brunak S (2005b) Non-classical protein secretion in bacteria. BMC Microbiol 5:58PubMedPubMedCentralCrossRefGoogle Scholar
- 71.Yu L, Guo Y, Li Y et al (2010a) SecretP: identifying bacterial secreted proteins by fusing new features into Chou’s pseudo-amino acid composition. J Theor Biol 267:1–6PubMedCrossRefGoogle Scholar
- 72.Yu L, Luo J, Guo Y et al (2013) In silico identification of gram-negative bacterial secreted proteins from primary sequence. Comput Biol Med 43:1177–1181PubMedCrossRefGoogle Scholar
- 73.Lloubes R, Bernadac A, Houot L, Pommier S (2013) Non classical secretion systems. Res Microbiol 164:655–663PubMedCrossRefGoogle Scholar
- 74.Luo J, Li W, Liu Z et al (2015) A sequence-based two-level method for the prediction of type I secreted RTX proteins. Analyst 140:3048–3056PubMedCrossRefGoogle Scholar
- 75.Burstein D, Zusman T, Degtyar E et al (2009) Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog 5:e1000508PubMedPubMedCentralCrossRefGoogle Scholar
- 76.Chen C, Banga S, Mertens K et al (2010) Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc Natl Acad Sci U S A 107:21755–21760PubMedPubMedCentralCrossRefGoogle Scholar
- 77.Lifshitz Z, Burstein D, Peeri M et al (2013) Computational modeling and experimental validation of the Legionella and Coxiellavirulence-related type-IVB secretion signal. Proc Natl Acad Sci U S A 110:E707–E715PubMedPubMedCentralCrossRefGoogle Scholar
- 78.Zou L, Nan C, Hu F (2013) Accurate prediction of bacterial type IV secreted effectors using amino acid composition and PSSM profiles. Bioinformatics 29:3135–3142PubMedPubMedCentralCrossRefGoogle Scholar
- 79.Wang Y, Wei X, Bao H, Liu S-L (2014) Prediction of bacterial type IV secreted effectors by C-terminal features. BMC Genomics 15:50PubMedPubMedCentralCrossRefGoogle Scholar
- 80.McDermott JE, Corrigan A, Peterson E et al (2011) Computational prediction of type III and IV secreted effectors in gram-negative bacteria. Infect Immun 79:23–32PubMedCrossRefGoogle Scholar
- 81.Anderson DM, Schneewind O (1997) A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science 278:1140–1143PubMedCrossRefGoogle Scholar
- 82.Samudrala R, Heffron F, McDermott JE (2009) Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathog 5:e1000375PubMedPubMedCentralCrossRefGoogle Scholar
- 83.Arnold R, Brandmaier S, Kleine F et al (2009) Sequence-based prediction of type III secreted proteins. PLoS Pathog 5:e1000376PubMedPubMedCentralCrossRefGoogle Scholar
- 84.Löwer M, Schneider G (2009) Prediction of type III secretion signals in genomes of gram-negative bacteria. PLoS One 4:e5917PubMedPubMedCentralCrossRefGoogle Scholar
- 85.Wang Y, Zhang Q, Sun M, Guo D (2011) High-accuracy prediction of bacterial type III secreted effectors based on position-specific amino acid composition profiles. Bioinformatics 27:777–784PubMedCrossRefGoogle Scholar
- 86.Wang Y, Sun M, Bao H, White AP (2013) T3_MM: a Markov model effectively classifies bacterial type III secretion signals. PLoS One 8:e58173PubMedPubMedCentralCrossRefGoogle Scholar
- 87.Dong X, Zhang Y-J, Zhang Z (2013) Using weakly conserved motifs hidden in secretion signals to identify type-III effectors from bacterial pathogen genomes. PLoS One 8:e56632PubMedPubMedCentralCrossRefGoogle Scholar
- 88.Dong X, Lu X, Zhang Z (2015) BEAN 2.0: an integrated web resource for the identification and functional analysis of type III secreted effectors. Database 2015:bav064PubMedPubMedCentralCrossRefGoogle Scholar
- 89.Goldberg T, Rost B, Bromberg Y (2016) Computational prediction shines light on type III secretion origins. Sci Rep 6:34516Google Scholar
- 90.Klein P, Kanehisa M, DeLisi C (1985) The detection and classification of membrane-spanning proteins. Biochim Biophys Acta 815:468–476PubMedCrossRefGoogle Scholar
- 91.von Heijne G (1992) Membrane protein structure prediction: hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494CrossRefGoogle Scholar
- 92.von Heijne G, Gavel Y (1988) Topogenic signals in integral membrane proteins. Eur J Biochem 174:671–678CrossRefGoogle Scholar
- 93.Paul C, Rosenbusch JP (1985) Folding patterns of porin and bacteriorhodopsin. EMBO J 4:1593–1597PubMedPubMedCentralCrossRefGoogle Scholar
- 94.Vogel H, Jähnig F (1986) Models for the structure of outer-membrane proteins of Escherichia coli derived from raman spectroscopy and prediction methods. J Mol Biol 190:191–199PubMedCrossRefGoogle Scholar
- 95.Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580PubMedCrossRefGoogle Scholar
- 96.Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850PubMedCrossRefGoogle Scholar
- 97.Möller S, Croning MDR, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653PubMedCrossRefGoogle Scholar
- 98.Elofsson A, von Heijne G (2007) Membrane protein structure: prediction versus reality. Annu Rev Biochem 76:125–140PubMedCrossRefGoogle Scholar
- 99.Punta M, Forrest LR, Bigelow H et al (2007) Membrane protein prediction methods. Methods 41:460–474PubMedPubMedCentralCrossRefGoogle Scholar
- 100.Tusnády GE, Simon I (2010) Topology prediction of helical transmembrane proteins: how far have we reached? Curr Protein Pept Sci 11:550–561PubMedCrossRefGoogle Scholar
- 101.Käll L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036PubMedCrossRefGoogle Scholar
- 102.Reynolds SM, Käll L, Riffle ME et al (2008) Transmembrane topology and signal peptide prediction using dynamic Bayesian networks. PLoS Comput Biol 4:e1000213PubMedPubMedCentralCrossRefGoogle Scholar
- 103.Jones DT (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23:538–544PubMedCrossRefGoogle Scholar
- 104.Nugent T, Jones DT (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics 10:159PubMedPubMedCentralCrossRefGoogle Scholar
- 105.Viklund H, Bernsel A, Skwark M, Elofsson A (2008) SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics 24:2928–2929PubMedCrossRefGoogle Scholar
- 106.Viklund H, Elofsson A (2008) OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24:1662–1668PubMedCrossRefGoogle Scholar
- 107.Viklund H, Elofsson A (2004) Best α-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci 13:1908–1917PubMedPubMedCentralCrossRefGoogle Scholar
- 108.Käll L, Krogh A, Sonnhammer EL (2005) An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21:i251–i257PubMedCrossRefGoogle Scholar
- 109.Bernsel A, Viklund H, Falk J et al (2008) Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci 105:7177–7181PubMedCrossRefGoogle Scholar
- 110.Hessa T, Meindl-Beinker NM, Bernsel A et al (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450:1026–1030PubMedCrossRefGoogle Scholar
- 111.Taylor PD, Attwood TK, Flower DR (2003) BPROMPT: a consensus server for membrane protein prediction. Nucleic Acids Res 31:3698–3700PubMedPubMedCentralCrossRefGoogle Scholar
- 112.Bernsel A, Viklund H, Hennerdal A, Elofsson A (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37:W465–W468PubMedPubMedCentralCrossRefGoogle Scholar
- 113.Tsirigos KD, Peters C, Shu N et al (2015) The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res 43:W401–W407PubMedPubMedCentralCrossRefGoogle Scholar
- 114.Hennerdal A, Elofsson A (2011) Rapid membrane protein topology prediction. Bioinformatics 27:1322–1323PubMedPubMedCentralCrossRefGoogle Scholar
- 115.Diederichs K, Freigang J, Umhau S et al (1998) Prediction by a neural network of outer membrane β-strand protein topology. Protein Sci 7:2413–2420PubMedPubMedCentralCrossRefGoogle Scholar
- 116.Martelli PL, Fariselli P, Krogh A, Casadio R (2002) A sequence-profile-based HMM for predicting and discriminating β barrel membrane proteins. Bioinformatics 18:S46–S53PubMedCrossRefGoogle Scholar
- 117.Bagos P, Liakopoulos T, Spyropoulos I, Hamodrakas S (2004a) A hidden Markov model method, capable of predicting and discriminating beta-barrel outer membrane proteins. BMC Bioinformatics 5:29PubMedPubMedCentralCrossRefGoogle Scholar
- 118.Bagos PG, Liakopoulos TD, Spyropoulos IC, Hamodrakas SJ (2004b) PRED-TMBB: a web server for predicting the topology of β-barrel outer membrane proteins. Nucleic Acids Res 32:W400–W404PubMedPubMedCentralCrossRefGoogle Scholar
- 119.Bigelow HR, Petrey DS, Liu J et al (2004) Predicting transmembrane beta-barrels in proteomes. Nucleic Acids Res 32:2566–2577PubMedPubMedCentralCrossRefGoogle Scholar
- 120.Bigelow H, Rost B (2006) PROFtmb: a web server for predicting bacterial transmembrane beta barrel proteins. Nucleic Acids Res 34:W186–W188PubMedPubMedCentralCrossRefGoogle Scholar
- 121.Bagos P, Liakopoulos T, Hamodrakas S (2005) Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method. BMC Bioinformatics 6:7PubMedPubMedCentralCrossRefGoogle Scholar
- 122.Jacoboni I, Martelli PL, Fariselli P et al (2001) Prediction of the transmembrane regions of β-barrel membrane proteins with a neural network-based predictor. Protein Sci 10:779–787PubMedPubMedCentralCrossRefGoogle Scholar
- 123.Natt NK, Kaur H, Raghava GPS (2004) Prediction of transmembrane regions of β-barrel proteins using ANN- and SVM-based methods. Proteins 56:11–18PubMedCrossRefGoogle Scholar
- 124.Hayat S, Elofsson A (2012) BOCTOPUS: improved topology prediction of transmembrane β barrel proteins. Bioinformatics 28:516–522PubMedCrossRefGoogle Scholar
- 125.Hayat S, Peters C, Shu N et al (2016) Inclusion of dyad-repeat pattern improves topology prediction of transmembrane β-barrel proteins. Bioinformatics 32:1571–1573PubMedCrossRefGoogle Scholar
- 126.Berven FS, Flikka K, Jensen HB, Eidhammer I (2004) BOMP: a program to predict integral β-barrel outer membrane proteins encoded within genomes of gram-negative bacteria. Nucleic Acids Res 32:W394–W399PubMedPubMedCentralCrossRefGoogle Scholar
- 127.Remmert M, Linke D, Lupas AN, Söding J (2009) HHomp—prediction and classification of outer membrane proteins. Nucleic Acids Res 37:W446–W451PubMedPubMedCentralCrossRefGoogle Scholar
- 128.Savojardo C, Fariselli P, Casadio R (2011) Improving the detection of transmembrane β-barrel chains with N-to-1 extreme learning machines. Bioinformatics 27:3123–3128PubMedCrossRefGoogle Scholar
- 129.Savojardo C, Fariselli P, Casadio R (2013) BETAWARE: a machine-learning tool to detect and predict transmembrane beta-barrel proteins in prokaryotes. Bioinformatics 29:504–505PubMedCrossRefGoogle Scholar
- 130.Waldispühl J, Berger B, Clote P, Steyaert J-M (2006a) transFold: a web server for predicting the structure and residue contacts of transmembrane beta-barrels. Nucleic Acids Res 34:W189–W193PubMedPubMedCentralCrossRefGoogle Scholar
- 131.Waldispühl J, Berger B, Clote P, Steyaert J-M (2006b) Predicting transmembrane β-barrels and interstrand residue interactions from sequence. Proteins 65:61–74PubMedCrossRefGoogle Scholar
- 132.Randall A, Cheng J, Sweredoski M, Baldi P (2008) TMBpro: secondary structure, β-contact and tertiary structure prediction of transmembrane β-barrel proteins. Bioinformatics 24:513–520PubMedCrossRefGoogle Scholar
- 133.Nakai K, Kanehisa M (1991) Expert system for predicting protein localization sites in gram-negative bacteria. Proteins 11:95–110PubMedCrossRefGoogle Scholar
- 134.Yu NY, Wagner JR, Laird MR et al (2010b) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615PubMedPubMedCentralCrossRefGoogle Scholar
- 135.Magnus M, Pawlowski M, Bujnicki JM (2012) MetaLocGramN: a meta-predictor of protein subcellular localization for gram-negative bacteria. Biochim Biophys Acta 1824:1425–1433PubMedCrossRefGoogle Scholar
- 136.Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29PubMedPubMedCentralCrossRefGoogle Scholar
- 137.Bhasin M, Garg A, Raghava GPS (2005) PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 21:2522–2524PubMedCrossRefGoogle Scholar
- 138.Goldberg T, Hecht M, Hamp T et al (2014) LocTree3 prediction of localization. Nucleic Acids Res 42:W350–W355PubMedPubMedCentralCrossRefGoogle Scholar
- 139.Goldberg T, Hamp T, Rost B (2012) LocTree2 predicts localization for all domains of life. Bioinformatics 28:i458–i465PubMedPubMedCentralCrossRefGoogle Scholar
- 140.Imai K, Asakawa N, Tsuji T et al (2008) SOSUI-GramN: high performance prediction for sub-cellular localization of proteins in gram-negative bacteria. Bioinformation 2:417–421PubMedPubMedCentralCrossRefGoogle Scholar
- 141.Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems, vol. 25, Curran Associates, Inc., Red Hook, NY, pp 1097–1105Google Scholar
- 142.Dahl GE, Yu D, Deng L, Acero A (2012) Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans Audio Speech Lang Process 20:30–42CrossRefGoogle Scholar
- 143.Magnan CN, Baldi P (2014) SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics 30:2592–2597PubMedPubMedCentralCrossRefGoogle Scholar
- 144.Xiong HY, Alipanahi B, Lee LJ et al (2015) The human splicing code reveals new insights into the genetic determinants of disease. Science 347:1254806PubMedCrossRefGoogle Scholar
- 145.Sønderby SK, Sønderby CK, Nielsen H, Winther O (2015) Convolutional LSTM networks for subcellular localization of proteins. In: Dediu A-H, Hernández-Quiroz F, Martín-Vide C, Rosenblueth DA (eds) Algorithms for computational biology, Lecture notes in computer science, vol 9199. Springer International Publishing, New York, pp 68–80CrossRefGoogle Scholar
- 146.Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190PubMedPubMedCentralCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media LLC 2017