Fusion Reporter Approaches to Monitoring Transmembrane Helix Interactions in Bacterial Membranes

Part of the Methods in Molecular Biology book series (MIMB, volume 1615)


In transenvelope multiprotein machines such as bacterial secretion systems, protein–protein interactions not only occur between soluble domains but might also be mediated by helix–helix contacts in the inner membrane. Here we describe genetic assays commonly used to test interactions between transmembrane α-helices in their native membrane environment. These assays are based on the reconstitution of dimeric regulators allowing the control of expression of reporter genes. We provide detailed protocols for the TOXCAT and GALLEX assays used to monitor homotypic and heterotypic transmembrane helix–helix interactions.

Key words

Membrane protein Protein-protein interaction Transmembrane segment Helix–helix interaction One-hybrid Two-hybrid cI repressor TOXCAT GALLEX 



Work in the EC laboratory is supported by the Centre National de la Recherche Scientifique, the Aix-Marseille Université, and grants from the Agence Nationale de la Recherche (ANR-14-CE14-0006-02 and ANR-15-CE11-0019-01). LL and AZ are recipients of doctoral fellowships from the French Ministère de l’Enseignement Supérieur et de la Recherche and end-of-thesis fellowships from the Fondation pour la Recherche Médicale (FDT20160435498 and FDT20140931060).


  1. 1.
    Lallemand M, Login FH, Guschinskaya N, Pineau C, Effantin G, Robert X, Shevchik VE (2013) Dynamic interplay between the periplasmic and transmembrane domains of GspL and GspM in the type II secretion system. PLoS One 8:e79562CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ma LS, Lin JS, Lai EM (2009) An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol 191:4316–4329CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Aschtgen MS, Gavioli M, Dessen A, Lloubès R, Cascales E (2010) The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol 75:886–899CrossRefPubMedGoogle Scholar
  4. 4.
    Durand E, Zoued A, Spinelli S, Watson PJ, Aschtgen MS, Journet L, Cambillau C, Cascales E (2012) Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J Biol Chem 287:14157–14168CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Garza I, Christie PJ (2013) A putative transmembrane leucine zipper of agrobacterium VirB10 is essential for T-pilus biogenesis but not type IV secretion. J Bacteriol 195:3022–3034CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Schneider D, Finger C, Prodöhl A, Volkmer T (2007) From interactions of single transmembrane helices to folding of alpha-helical membrane proteins: analyzing transmembrane helix-helix interactions in bacteria. Curr Protein Pept Sci 8:45–61CrossRefPubMedGoogle Scholar
  7. 7.
    Fink A, Sal-Man N, Gerber D, Shai Y (2012) Transmembrane domains interactions within the membrane milieu: principles, advances and challenges. Biochim Biophys Acta 1818:974–983CrossRefPubMedGoogle Scholar
  8. 8.
    Hu JC (1995) Repressor fusions as a tool to study protein-protein interactions. Structure 3:431–433CrossRefPubMedGoogle Scholar
  9. 9.
    Leeds JA, Beckwith J (1998) Lambda repressor N-terminal DNA-binding domain as an assay for protein transmembrane segment interactions in vivo. J Mol Biol 280:799–810CrossRefPubMedGoogle Scholar
  10. 10.
    Leeds JA, Beckwith J (2000) A gene fusion method for assaying interactions of protein transmembrane segments in vivo. Methods Enzymol 2327:165–175CrossRefGoogle Scholar
  11. 11.
    Turner LR, Olson JW, Lory S (1997) The XcpR protein of Pseudomonas aeruginosa dimerizes via its N-terminus. Mol Microbiol 26:877–887CrossRefPubMedGoogle Scholar
  12. 12.
    Dang TA, Zhou XR, Graf B, Christie PJ (1999) Dimerization of the agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on the assembly and function of the T-DNA transporter. Mol Microbiol 32:1239–1253CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rashkova S, Zhou XR, Chen J, Christie PJ (2000) Self-assembly of the Agrobacterium tumefaciens VirB11 traffic ATPase. J Bacteriol 182:4137–4145CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Langosch D, Brosig B, Kolmar H, Fritz HJ (1996) Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. J Mol Biol 263:525–530CrossRefPubMedGoogle Scholar
  15. 15.
    Russ WP, Engelman DM (1999) TOXCAT: a measure of transmembrane helix association in a biological membrane. Proc Natl Acad Sci U S A 96:863–868CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Joce C, Wiener A, Yin H (2011) Transmembrane domain oligomerization propensity determined by ToxR assay. J Vis Exp 51Google Scholar
  17. 17.
    Lindner E, Langosch D (2006) A ToxR-based dominant-negative system to investigate heterotypic transmembrane domain interactions. Proteins 65:803–807CrossRefPubMedGoogle Scholar
  18. 18.
    Lindner E, Unterreitmeier S, Ridder AN, Langosch D (2007) An extended ToxR POSSYCCAT system for positive and negative selection of self-interacting transmembrane domains. J Microbiol Methods 69:298–305CrossRefPubMedGoogle Scholar
  19. 19.
    Lis M, Blumenthal K (2006) A modified, dual reporter TOXCAT system for monitoring homodimerization of transmembrane segments of proteins. Biochem Biophys Res Commun 339:321–324CrossRefPubMedGoogle Scholar
  20. 20.
    Schneider D, Engelman DM (2003) GALLEX, a measurement of heterologous association of transmembrane helices in a biological membrane. J Biol Chem 278:3105–3111CrossRefPubMedGoogle Scholar
  21. 21.
    Cymer F, Sanders CR, Schneider D (2013) Analyzing oligomerization of individual transmembrane helices and of entire membrane proteins in E. coli: a hitchhiker’s guide to GALLEX. Methods Mol Biol 932:259–276CrossRefPubMedGoogle Scholar
  22. 22.
    Tome L, Steindorf D, Schneider D (2013) Genetic systems for monitoring interactions of transmembrane domains in bacterial membranes. Methods Mol Biol 1063:57–91CrossRefPubMedGoogle Scholar
  23. 23.
    Karimova G, Pidoux J, Ullmann A, Ladant D (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ladant D, Karimova G (2000) Genetic systems for analyzing protein-protein interactions in bacteria. Res Microbiol 151:711–720CrossRefPubMedGoogle Scholar
  25. 25.
    Battesti A, Bouveret E (2012) The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods 58:325–334CrossRefPubMedGoogle Scholar
  26. 26.
    Karimova G, Dautin N, Ladant D (2005) Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187:2233–2243CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sivanesan D, Hancock MA, Villamil Giraldo AM, Baron C (2010) Quantitative analysis of VirB8-VirB9-VirB10 interactions provides a dynamic model of type IV secretion system core complex assembly. Biochemistry 49:4483–4493CrossRefPubMedGoogle Scholar
  28. 28.
    Cisneros DA, Bond PJ, Pugsley AP, Campos M, Francetic O (2012) Minor pseudopilin self-assembly primes type II secretion pseudopilus elongation. EMBO J 31:1041–1053CrossRefPubMedGoogle Scholar
  29. 29.
    Georgiadou M, Castagnini M, Karimova G, Ladant D, Pelicic V (2012) Large-scale study of the interactions between proteins involved in type IV pilus biology in Neisseria meningitidis: characterization of a subcomplex involved in pilus assembly. Mol Microbiol 84:857–873CrossRefPubMedGoogle Scholar
  30. 30.
    Zoued A, Durand E, Bebeacua C, Brunet YR, Douzi B, Cambillau C, Cascales E, Journet L (2013) TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J Biol Chem 288:27031–27041CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pais SV, Milho C, Almeida F, Mota LJ (2013) Identification of novel type III secretion chaperone-substrate complexes of Chlamydia trachomatis. PLoS One 8:e56292CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pineau C, Guschinskaya N, Robert X, Gouet P, Ballut L, Shevchik VE (2014) Substrate recognition by the bacterial type II secretion system: more than a simple interaction. Mol Microbiol 94:126–140CrossRefPubMedGoogle Scholar
  33. 33.
    Brunet YR, Zoued A, Boyer F, Douzi B, Cascales E (2015) The type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLoS Genet 11:e1005545CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zoued A, Durand E, Brunet YR, Spinelli S, Douzi B, Guzzo M, Flaugnatti N, Legrand P, Journet L, Fronzes R, Mignot T, Cambillau C, Cascales E (2016) Priming and polymerization of a bacterial contractile tail structure. Nature 531:59–63CrossRefPubMedGoogle Scholar
  35. 35.
    Llosa M, Zunzunegui S, de la Cruz F (2003) Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc Natl Acad Sci U S A 100:10465–10470CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Segura RL, Aguila-Arcos S, Ugarte-Uribe B, Vecino AJ, de la Cruz F, Goñi FM, Alkorta I (2013) The transmembrane domain of the T4SS coupling protein TrwB and its role in protein-protein interactions. Biochim Biophys Acta 1828:2015–2025CrossRefPubMedGoogle Scholar
  37. 37.
    Sawma P, Roth L, Blanchard C, Bagnard D, Crémel G, Bouveret E, Duneau JP, Sturgis JN, Hubert P (2014) Evidence for new homotypic and heterotypic interactions between transmembrane helices of proteins involved in receptor tyrosine kinase and neuropilin signaling. J Mol Biol 426:4099–4111CrossRefPubMedGoogle Scholar
  38. 38.
    Dimitrova M, Younès-Cauet G, Oertel-Buchheit P, Porte D, Schnarr M, Granger-Schnarr M (1998) A new LexA-based genetic system for monitoring and analyzing protein heterodimerization in Escherichia coli. Mol Gen Genet 257:205–212CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ—CNRSMarseille Cedex 20France
  2. 2.Division of Infectious Diseases and Harvard Medical School, Department of Microbiology and ImmunobiologyHoward Hughes Medical Institute, Brigham and Women’s HospitalBostonUSA

Personalised recommendations