Advertisement

Measure of Peptidoglycan Hydrolase Activity

  • Yoann G. Santin
  • Eric Cascales
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1615)

Abstract

Most gene clusters encoding multiprotein complexes of the bacterial cell envelope, such as conjugation and secretion systems, Type IV pili, and flagella, bear a gene encoding an enzyme with peptidoglycan hydrolase activity. These enzymes are usually glycoside hydrolases that cleave the glycan chains of the peptidoglycan. Their activities are spatially controlled to avoid cell lysis and to create localized rearrangement of the cell wall. This is assured by interaction with the structural subunits of the apparatus. Here we describe protocols to test the peptidoglycan hydrolase activity of these proteins in vitro and in solution.

Key words

Cell wall Localized degradation Peptidoglycan Lytic transglycosylase Remazol blue 

Notes

Acknowledgements

Work in EC laboratory is supported by the Centre National de la Recherche Scientifique, the Aix-Marseille Université, and grants from the Agence Nationale de la Recherche (ANR-14-CE14-0006-02 and ANR-15-CE11-0019-01).

References

  1. 1.
    Demchick P, Koch AL (1996) The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J Bacteriol 178:768–773CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Scheurwater E, Reid CW, Clarke AJ (2008) Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol 40:586–591CrossRefPubMedGoogle Scholar
  3. 3.
    Scheurwater EM, Burrows LL (2011) Maintaining network security: how macromolecular structures cross the peptidoglycan layer. FEMS Microbiol Lett 318:1–9CrossRefPubMedGoogle Scholar
  4. 4.
    Koraimann G (2003) Lytic transglycosylases in macromolecular transport systems of gram-negative bacteria. Cell Mol Life Sci 60:2371–2388CrossRefPubMedGoogle Scholar
  5. 5.
    Höltje JV (1996) Lytic transglycosylases. EXS 75:425–429PubMedGoogle Scholar
  6. 6.
    Zahrl D, Wagner M, Bischof K, Bayer M, Zavecz B, Beranek A, Ruckenstuhl C, Zarfel GE, Koraimann G (2005) Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems. Microbiology 151:3455–3467CrossRefPubMedGoogle Scholar
  7. 7.
    van Heijenoort J (2011) Peptidoglycan hydrolases of Escherichia coli. Microbiol Mol Biol Rev 75:636–663CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    de la Mora J, Ballado T, González-Pedrajo B, Camarena L, Dreyfus G (2007) The flagellar muramidase from the photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 189:7998–8004CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    de la Mora J, Osorio-Valeriano M, González-Pedrajo B, Ballado T, Camarena L, Dreyfus G (2012) The C terminus of the flagellar muramidase SltF modulates the interaction with FlgJ in Rhodobacter sphaeroides. J Bacteriol 194:4513–4520CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nambu T, Minamino T, Macnab RM, Kutsukake K (1999) Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium. J Bacteriol 181:1555–1561PubMedPubMedCentralGoogle Scholar
  11. 11.
    Mushegian AR, Fullner KJ, Koonin EV, Nester EW (1996) A family of lysozyme-like virulence factors in bacterial pathogens of plants and animals. Proc Natl Acad Sci U S A 93:7321–7326CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kohler PL, Hamilton HL, Cloud-Hansen K, Dillard JP (2007) AtlA functions as a peptidoglycan lytic transglycosylase in the Neisseria gonorrhoeae type IV secretion system. J Bacteriol 189:5421–5428CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhong Q, Shao S, Mu R, Wang H, Huang S, Han J, Huang H, Tian S (2011) Characterization of peptidoglycan hydrolase in Cag pathogenicity island of Helicobacter pylori. Mol Biol Rep 38:503–509CrossRefPubMedGoogle Scholar
  14. 14.
    García-Gómez E, Espinosa N, de la Mora J, Dreyfus G, González-Pedrajo B (2011) The muramidase EtgA from enteropathogenic Escherichia coli is required for efficient type III secretion. Microbiology 157:1145–1160CrossRefPubMedGoogle Scholar
  15. 15.
    Arends K, Celik EK, Probst I, Goessweiner-Mohr N, Fercher C, Grumet L, Soellue C, Abajy MY, Sakinc T, Broszat M, Schiwon K, Koraimann G, Keller W, Grohmann E (2013) TraG encoded by the pIP501 type IV secretion system is a two-domain peptidoglycan-degrading enzyme essential for conjugative transfer. J Bacteriol 195:4436–4444CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Laverde Gomez JA, Bhatty M, Christie PJ (2014) PrgK, a multidomain peptidoglycan hydrolase, is essential for conjugative transfer of the pheromone-responsive plasmid pCF10. J Bacteriol 196:527–539CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Weber BS, Hennon SW, Wright MS, Scott NE, de Berardinis V, Foster LJ, Ayala JA, Adams MD, Feldman MF (2016) Genetic dissection of the Type VI secretion system in Acinetobacter and identification of a novel peptidoglycan hydrolase, TagX, required for its biogenesis. MBioGoogle Scholar
  18. 18.
    Santin YG, Cascales E (2016) Domestication of a housekeeping transglycosylase for assembly of a type VI secretion system. EMBO Rep 18(1):138–149CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Höppner C, Carle A, Sivanesan D, Hoeppner S, Baron C (2005) The putative lytic transglycosylase VirB1 from Brucella suis interacts with the type IV secretion system core components VirB8, VirB9 and VirB11. Microbiology 151:3469–3482CrossRefPubMedGoogle Scholar
  20. 20.
    Creasey EA, Delahay RM, Daniell SJ, Frankel G (2003) Yeast two-hybrid system survey of interactions between LEE-encoded proteins of enteropathogenic Escherichia coli. Microbiology 149:2093–2106CrossRefPubMedGoogle Scholar
  21. 21.
    Burkinshaw BJ, Deng W, Lameignère E, Wasney GA, Zhu H, Worrall LJ, Finlay BB, Strynadka NC (2015) Structural analysis of a specialized type III secretion system peptidoglycan-cleaving enzyme. J Biol Chem 290:10406–10417CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Herlihey FA, Osorio-Valeriano M, Dreyfus G, Clarke AJ (2016) Modulation of the lytic activity of the dedicated autolysin for flagellum formation SltF by flagellar rod proteins FlgB and FlgF. J Bacteriol 198:1847–1856CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Engel H, Kazemier B, Keck W (1991) Murein-metabolizing enzymes from Escherichia coli: sequence analysis and controlled overexpression of the slt gene, which encodes the soluble lytic transglycosylase. J Bacteriol 173:6773–6782CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lommatzsch J, Templin MF, Kraft AR, Vollmer W, Höltje JV (1997) Outer membrane localization of murein hydrolases: MltA, a third lipoprotein lytic transglycosylase in Escherichia coli. J Bacteriol 179:5465–5470CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Leclerc D, Asselin A (1989) Detection of bacterial cell wall hydrolases after denaturing polyacrylamide gel electrophoresis. Can J Microbiol 35:749–753CrossRefPubMedGoogle Scholar
  26. 26.
    Bernadsky G, Beveridge TJ, Clarke AJ (1994) Analysis of the sodium dodecyl sulfate-stable peptidoglycan autolysins of select gram-negative pathogens by using renaturing polyacrylamide gel electrophoresis. J Bacteriol 176:5225–5232CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fibriansah G, Gliubich FI, Thunnissen AM (2012) On the mechanism of peptidoglycan binding and cleavage by the endo-specific lytic transglycosylase MltE from Escherichia coli. Biochemistry 51:9164–9177CrossRefPubMedGoogle Scholar
  28. 28.
    Uehara T, Parzych KR, Dinh T, Bernhardt TG (2010) Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J 29:1412–1422CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Scheurwater EM, Clarke AJ (2008) The C-terminal domain of Escherichia coli YfhD functions as a lytic transglycosylase. J Biol Chem 283:8363–8373CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Clarke AJ (1993) Compositional analysis of peptidoglycan by high-performance anion-exchange chromatography. Anal Biochem 212:344–350CrossRefPubMedGoogle Scholar
  31. 31.
    Leduc M, Joseleau-Petit D, Rothfield LI (1989) Interactions of membrane lipoproteins with the murein sacculus of Escherichia coli as shown by chemical crosslinking studies of intact cells. FEMS Microbiol Lett 51:11–14CrossRefPubMedGoogle Scholar
  32. 32.
    Cascales E, Lloubès R (2004) Deletion analyses of the peptidoglycan-associated lipoprotein Pal reveals three independent binding sequences including a TolA box. Mol Microbiol 51:873–885CrossRefPubMedGoogle Scholar
  33. 33.
    Imada A, Kintaka K, Nakao M, Shinagawa S (1982) Bulgecin, a bacterial metabolite which in concert with beta-lactam antibiotics causes bulge formation. J Antibiot (Tokyo) 35:1400–1403CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM, UMR 7255)Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ—CNRSMarseille Cedex 20France

Personalised recommendations