A Color Segmentation-Based Method to Quantify Atherosclerotic Lesion Compositions with Immunostaining

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1614)

Abstract

There is an increasing recognition that atherosclerotic lesion composition, rather than size, is the determinant of acute events. Immunostaining is a commonly used method to characterize atherosclerotic lesion compositions. Here, we describe a color segmentation-based approach in HSI (hue, saturation, and intensity) color mode, which minimizes subjectivity and produces accurate and consistent quantifications of atherosclerotic lesion compositions.

Key words

Immunostaining Atherosclerosis Antibody Imaging Color 

Notes

Acknowledgments

Congqing Wu is supported by an American Heart Association Postdoctoral fellow award (16POST31140008). The authors’ research work is supported by an Institutional Development Award from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20 GM103527 and R01 under grant numbers HL107319 and HL133723 from the National Institutes of Health of the United States of America. The content in this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

  1. 1.
    Breslow JL (1996) Mouse models of atherosclerosis. Science 272:685–688CrossRefPubMedGoogle Scholar
  2. 2.
    Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK (1994) Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 93:1885–1893CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Plump AS, Smith JD, Hayek T, Aaltosetala K, Walsh A, Verstuyft JG et al (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein-E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471CrossRefPubMedGoogle Scholar
  5. 5.
    Daugherty A, Manning MW, Cassis LA (2000) Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 105:1605–1612CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Daugherty A, Rateri DL, Lu H, Inagami T, Cassis LA (2004) Hypercholesterolemia stimulates angiotensin peptide synthesis and contributes to atherosclerosis through the AT1A receptor. Circulation 110:3849–3857CrossRefPubMedGoogle Scholar
  7. 7.
    Wassmann S, Czech T, van Eickels M, Fleming I, Bohm M, Nickenig G (2004) Inhibition of diet-induced atherosclerosis and endothelial dysfunction in apolipoprotein E/angiotensin II type 1A receptor double-knockout mice. Circulation 110:3062–3067CrossRefPubMedGoogle Scholar
  8. 8.
    Lu H, Rateri DL, Feldman DL, Charnigo RJ Jr, Fukamizu A, Ishida J et al (2008) Renin inhibition reduces hypercholesterolemia-induced atherosclerosis in mice. J Clin Invest 118:984–993PubMedPubMedCentralGoogle Scholar
  9. 9.
    Daugherty A, Lu H, Rateri DL, Cassis LA (2008) Augmentation of the renin-angiotensin system by hypercholesterolemia promotes vascular diseases. Future Lipidol 3:625–636CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lu H, Balakrishnan A, Howatt DA, Wu C, Charnigo R, Liau G et al (2012) Comparative effects of different modes of renin angiotensin system inhibition on hypercholesterolaemia-induced atherosclerosis. Br J Pharmacol 165:2000–2008CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen XC, Lu H, Zhao M, Tashiro K, Cassis LA, Daugherty A (2013) Angiotensin-converting enzyme promotes atherosclerosis through an angiotensin I to angiotensin II pathway involving leukocytes. Arterioscler Thromb Vasc Biol 33:2075–2080CrossRefPubMedGoogle Scholar
  12. 12.
    Lu H, Wu C, Howatt DA, Balakrishnan A, Moorleghen JJ, Chen X et al (2016) Angiotensinogen exerts effects independent of angiotensin II. Arterioscler Thromb Vasc Biol 36:256–265CrossRefPubMedGoogle Scholar
  13. 13.
    Daugherty A, Cassis L (1999) Chronic angiotensin II infusion promotes atherogenesis in low density lipoprotein receptor -/- mice. Ann N Y Acad Sci 892:108–118CrossRefPubMedGoogle Scholar
  14. 14.
    Weiss D, Kools JJ, Taylor WR (2001) Angiotensin II-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice. Circulation 103:448–454CrossRefPubMedGoogle Scholar
  15. 15.
    Imanishi T, Tsujioka H, Ikejima H, Kuroi A, Takarada S, Kitabata H et al (2008) Renin inhibitor aliskiren improves impaired nitric oxide bioavailability and protects against atherosclerotic changes. Hypertension 52:563–572CrossRefPubMedGoogle Scholar
  16. 16.
    Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med 342:145–153CrossRefPubMedGoogle Scholar
  17. 17.
    ONTARGET Investigators, Yusuf S, Teo KK, Pogue J, Dyal L, Copland I et al (2008) Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 358:1547–1559CrossRefGoogle Scholar
  18. 18.
    Lu H, Rateri DL, Daugherty A (2007) Immunostaining of mouse atherosclerosis lesions. Methods Mol Med 139:77–94CrossRefPubMedGoogle Scholar
  19. 19.
    Wu C, Xu Y, Lu H, Howatt DA, Balakrishnan A, Moorleghen JJ et al (2015) Cys18-Cys137 disulfide bond in mouse angiotensinogen does not affect AngII-dependent functions in vivo. Hypertension 65:800–805CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yiannikouris F, Wang Y, Shoemaker R, Larian N, Thompson J, English VL et al (2015) Deficiency of angiotensinogen in hepatocytes markedly decreases blood pressure in lean and obese male mice. Hypertension 66:836–842CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wu C, Lu H, Cassis LA, Daugherty A (2011) Molecular and pathophysiological features of angiotensinogen: a mini review. N Am J Med Sci (Boston) 4:183–190CrossRefGoogle Scholar
  22. 22.
    Matsusaka T, Niimura F, Shimizu A, Pastan I, Saito A, Kobori H et al (2012) Liver angiotensinogen is the primary source of renal angiotensin II. J Am Soc Nephrol 23:1181–1189CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen XC, Howatt DA, Balakrishnan A, Moorleghen JJ, Wu CQ, Cassis LA et al (2016) Angiotensin-converting enzyme in smooth muscle cells promotes atherosclerosis. Arterioscler Thromb Vasc Biol 36:1085–1089CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Benicky J, Hafko R, Sanchez-Lemus E, Aguilera G, Saavedra JM (2012) Six commercially available angiotensin II AT(1) receptor antibodies are non-specific. Cell Mol Neurobiol 32:1353–1365CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Herrera M, Sparks MA, Alfonso-Pecchio AR, Harrison-Bernard LM, Coffman TM (2013) Response to lack of specificity of commercial antibodies leads to misidentification of angiotensin type-1 receptor protein. Hypertension 61:e32CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhang G, Chen Y, BilalWaqar A, Han L, Jia M, Xu C et al (2015) Quantitative analysis of rabbit coronary atherosclerosis. Practical techniques utilizing open-source software. Anal Quant Cytol Histol 37:115–122Google Scholar
  27. 27.
    Vrekoussis T, Chaniotis V, Navrozoglou I, Dousias V, Pavlakis K, Stathopoulos EN et al (2009) Image analysis of breast cancer immunohistochemistry-stained sections using ImageJ: an RGB-based model. Anticancer Res 29:4995–4998PubMedGoogle Scholar
  28. 28.
    Daugherty A, Whitman SC (2003) Quantification of atherosclerosis in mice. Methods Mol Biol 209:293–309PubMedGoogle Scholar
  29. 29.
    Daugherty A, Lu H, Howatt DA, Rateri DL (2009) Modes of defining atherosclerosis in mouse models: relative merits and evolving standards. Methods Mol Biol 573:1–15CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Saha Cardiovascular Research CenterUniversity of KentuckyLexingtonUSA
  2. 2.Department of PhysiologyUniversity of KentuckyLexingtonUSA
  3. 3.Saha Cardiovascular Research CenterUniversity of KentuckyLexingtonUSA

Personalised recommendations