The FANTOM5 Computation Ecosystem: Genomic Information Hub for Promoters and Active Enhancers

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1611)

Abstract

The Functional Annotation of the Mammalian Genome 5 (FANTOM5) project conducted transcriptome analysis of various mammalian cell types and provided a comprehensive resource to understand transcriptome and transcriptional regulation in individual cellular states encoded in the genome.

FANTOM5 used cap analysis of gene expression (CAGE) with single-molecule sequencing to map transcription start sites (TSS) and measured their expression in a diverse range of samples. The main results from FANTOM5 were published as a promoter-level mammalian expression atlas and an atlas of active enhancers across human cell types. The FANTOM5 dataset is composed of raw experimental data and the results of bioinformatics analyses. In this chapter, we give a detailed description of the content of the FANTOM5 dataset and elaborate on different computing applications developed to publish the data and enable reproducibility and discovery of new findings. We present use cases in which the FANTOM5 dataset has been reused, leading to new findings.

Keywords

FANTOM5 Genomics Transcriptome Genome annotation CAGE TSS Promoter Enhancer 

References

  1. 1.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. doi:10.1038/nrg2484 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yu NY, Hallstrom BM, Fagerberg L et al (2015) Complementing tissue characterization by integrating transcriptome profiling from the human protein atlas and from the FANTOM5 consortium. Nucleic Acids Res 43(14):6787–6798. doi:10.1093/nar/gkv608 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Murata M, Nishiyori-Sueki H, Kojima-Ishiyama M et al (2014) Detecting expressed genes using CAGE. In: Miyamoto-Sato E, Ohashi H, Sasaki H, Nishikawa J-I, Yanagawa H (eds) Transcription factor regulatory networks: methods and protocols. Springer, New York, NY, pp 67–85. doi:10.1007/978-1-4939-0805-9_7Google Scholar
  4. 4.
    Kanamori-Katayama M, Itoh M, Kawaji H et al (2011) Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome Res 21(7):1150–1159. doi:10.1101/gr.115469.110 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Takahashi H, Lassmann T, Murata M et al (2012) 5[prime] end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc 7(3):542–561CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Haberle V, Li N, Hadzhiev Y et al (2014) Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 507(7492):381–385. doi:10.1038/nature12974 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563. doi:10.1126/science.1112014 CrossRefPubMedGoogle Scholar
  8. 8.
    The ENCODE project consurtium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74CrossRefGoogle Scholar
  9. 9.
    Celniker SE, Dillon LAL, Gerstein MB et al (2009) Unlocking the secrets of the genome. Nature 459(7249):927–930CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    De Hoon M, Shin JW, Carninci P (2015) Paradigm shifts in genomics through the FANTOM projects. Mamm Genome 26(9–10):391–402. doi:10.1007/s00335-015-9593-8 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Forrest AR, Kawaji H, Rehli M et al (2014) A promoter-level mammalian expression atlas. Nature 507(7493):462–470. doi:10.1038/nature13182 CrossRefPubMedGoogle Scholar
  12. 12.
    Andersson R, Gebhard C, Miguel-Escalada I et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507(7493):455–461. doi:10.1038/nature12787 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Arner E, Daub CO, Vitting-Seerup K et al (2015) Gene regulation. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347(6225):1010–1014. doi:10.1126/science.1259418 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lizio M, Harshbarger J, Shimoji H et al (2015) Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol 16:22. doi:10.1186/s13059-014-0560-6 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    The Functional Genomics Data Society (FGED), TFGDS MAGE-TAB Specification. http://www.mged.org/mage-tab/Google Scholar
  16. 16.
    Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85(8):2444–2448CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kodama Y, Mashima J, Kaminuma E et al (2012) The DNA data Bank of Japan launches a new resource, the DDBJ Omics archive of functional genomics experiments. Nucleic Acids Res 40(Database issue):D38–D42. doi:10.1093/nar/gkr994 CrossRefPubMedGoogle Scholar
  18. 18.
    Bard J, Rhee SY, Ashburner M (2005) An ontology for cell types. Genome Biol 6(2):R21. doi:10.1186/gb-2005-6-2-r21 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kibbe WA, Arze C, Felix V et al (2015) Disease ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data. Nucleic Acids Res 43(Database issue):D1071–D1078. doi:10.1093/nar/gku1011 CrossRefPubMedGoogle Scholar
  20. 20.
    Druzinsky R, Mungall C, Haendel M et al (2013) What is an anatomy ontology? Anat Rec (Hoboken) 296(12):1797–1799. doi:10.1002/ar.22805 CrossRefGoogle Scholar
  21. 21.
    Severin J, Lizio M, Harshbarger J et al (2014) Interactive visualization and analysis of large-scale sequencing datasets using ZENBU. Nat Biotechnol 32(3):217–219. doi:10.1038/nbt.2840 CrossRefPubMedGoogle Scholar
  22. 22.
    Abugessaisa I, Shimoji H, Sahin S et al (2016) FANTOM5 transcriptome catalog of cellular states based on Semantic MediaWiki. Database (Oxford) 2016. doi:10.1093/database/baw105
  23. 23.
    Krötzsch M, Vrandečić D, Völkel M (2006) Semantic MediaWiki. In: Cruz I, Decker S, Allemang D et al (eds) The semantic web-ISWC 2006, Lecture notes in computer science, vol 4273. Springer, Berlin Heidelberg, pp 935–942. doi:10.1007/11926078_68CrossRefGoogle Scholar
  24. 24.
    Smedley D, Haider S, Durinck S et al (2015) The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res 43(W1):W589–W598. doi:10.1093/nar/gkv350CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Theocharidis A, van Dongen S, Enright AJ et al (2009) Network visualization and analysis of gene expression data using BioLayout express(3D). Nat Protoc 4(10):1535–1550. doi:10.1038/nprot.2009.177 CrossRefPubMedGoogle Scholar
  26. 26.
    Abugessaisa I (2010) Geospatial metadata extraction from product description document applying methods from ontology engineering. Int J Metadata Semant Ontologies 5(4):321–332. doi:10.1504/ijmso.2010.035554 CrossRefGoogle Scholar
  27. 27.
    Patrinos GP, Cooper DN, van Mulligen E et al (2012) Microattribution and nanopublication as means to incentivize the placement of human genome variation data into the public domain. Hum Mutat 33(11):1503–1512. doi:10.1002/humu.22144 CrossRefPubMedGoogle Scholar
  28. 28.
    Speir ML, Zweig AS, Rosenbloom KR et al (2016) The UCSC genome browser database: 2016 update. Nucleic Acids Res 44(D1):D717–D725. doi:10.1093/nar/gkv1275 CrossRefPubMedGoogle Scholar
  29. 29.
    Finucane HK, Bulik-Sullivan B, Gusev A et al (2015) Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet 47(11):1228–1235CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kaczkowski B, Tanaka Y, Kawaji H et al (2016) Transcriptome analysis of recurrently deregulated genes across multiple cancers identifies new pan-cancer biomarkers. Cancer Res 76(2):216–226. doi:10.1158/0008-5472.CAN-15-0484 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan

Personalised recommendations