Locating and Visualizing Crystals for X-Ray Diffraction Experiments

Part of the Methods in Molecular Biology book series (MIMB, volume 1607)


Macromolecular crystallography has advanced from using macroscopic crystals, which might be >1 mm on a side, to crystals that are essentially invisible to the naked eye, or even under a standard laboratory microscope. As crystallography requires recognizing crystals when they are produced, and then placing them in an X-ray, electron, or neutron beam, this provides challenges, particularly in the case of advanced X-ray sources, where beams have very small cross sections and crystals may be vanishingly small. Methods for visualizing crystals are reviewed here, and examples of different types of cases are presented, including: standard crystals, crystals grown in mesophase, in situ crystallography, and crystals grown for X-ray Free Electron Laser or Micro Electron Diffraction experiments. As most techniques have limitations, it is desirable to have a range of complementary techniques available to identify and locate crystals. Ideally, a given technique should not cause sample damage, but sometimes it is necessary to use techniques where damage can only be minimized. For extreme circumstances, the act of probing location may be coincident with collecting X-ray diffraction data. Future challenges and directions are also discussed.

Key words

Synchrotron radiation X-ray free electron laser (XFEL) Lipidic cubic phase (LCP) In situ crystallography Second-order nonlinear optical imaging of chiral crystals (SONICC) Fluorescence Micro electron diffraction (MicroED) 


  1. 1.
    Giegé R (2013) A historical perspective on protein crystallization from 1840 to the present day. FEBS J 280:6456–6497PubMedCrossRefGoogle Scholar
  2. 2.
    Bernal JD, Crowfoot D (1934) X-ray photographs of crystalline pepsin. Nature 133:794–795CrossRefGoogle Scholar
  3. 3.
    Phillips JC, Wlodawer A, Yevitz MM et al (1976) Applications of synchrotron radiation to protein crystallography: preliminary results. Proc Natl Acad Sci U S A 73:128–132PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Riekel C (2004) Recent developments in microdiffraction on protein crystals. J Synchrotron Radiat 11:4–6PubMedCrossRefGoogle Scholar
  5. 5.
    Nelson R, Sawaya MR, Balbirnie M et al (2005) Structure of the cross-β spine of amyloid-like fibrils. Nature 435:773–777PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Moukhametzianov R, Burghammer M, Edwards PC et al (2008) Protein crystallography with a micrometre-sized synchrotron-radiation beam. Acta Crystallogr D Biol Crystallogr 64:158–166PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Sanishvili R, Yoder DW, Pothineni SB et al (2011) Radiation damage in protein crystals is reduced with a micron-sized X-ray beam. Proc Natl Acad Sci U S A 108:6127–6132PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Chapman HN, Fromme P, Barty A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sanishvili R, Nagarajan V, Yoder D et al (2008) A 7 microm mini-beam improves diffraction data from small or imperfect crystals of macromolecules. Acta Crystallogr D Biol Crystallogr 64:425–435PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Fischetti RF, Xu S, Yoder DW et al (2009) Mini-beam collimator enables microcrystallography experiments on standard beamlines. J Synchrotron Radiat 16:217–225PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Henderson R (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28:171–193PubMedCrossRefGoogle Scholar
  12. 12.
    Petsko GA (1975) Protein crystallography at sub-zero temperatures: cryo-protective mother liquors for protein crystals. J Mol Biol 96:381–392PubMedCrossRefGoogle Scholar
  13. 13.
    Teng T-Y (1990) Mounting of crystals for macromolecular crystallography in a free-standing thin film. J Appl Crystallogr 23:387–391CrossRefGoogle Scholar
  14. 14.
    Hope H (1990) Crystallography of biological macromolecules at ultra-low temperature. Annu Rev Biophys Biophys Chem 19:107–126PubMedCrossRefGoogle Scholar
  15. 15.
    Axford D, Owen RL, Aishima J et al (2012) In situ macromolecular crystallography using microbeams. Acta Crystallogr D Biol Crystallogr 68:592–600PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A 93:14532–14535PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Caffrey M (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr F Struct Biol Commun 71:3–18PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Rodriguez JA, Ivanova MI, Sawaya MR et al (2015) Structure of the toxic core of α-synuclein from invisible crystals. Nature 525:486–490PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Stevenson HP, Makhov AM, Calero M et al (2014) Use of transmission electron microscopy to identify nanocrystals of challenging protein targets. Proc Natl Acad Sci U S A 111:8470–8475PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Perrakis A, Cipriani F, Castagna J-C et al (1999) Protein microcrystals and the design of a microdiffractometer: current experience and plans at EMBL and ESRF/ID13. Acta Crystallogr D Biol Crystallogr 55:1765–1770PubMedCrossRefGoogle Scholar
  21. 21.
    Fuchs MR, Pradervand C, Thominet V et al (2014) D3, the new diffractometer for the macromolecular crystallography beamlines of the Swiss Light Source. J Synchrotron Radiat 21:340–351PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Khan I, Gillilan R, Kriksunov I et al (2012) Confocal microscopy on the beamline: novel three-dimensional imaging and sample positioning. J Appl Crystallogr 45:936–943PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Gilis D, Massar S, Cerf NJ et al (2001) Optimality of the genetic code with respect to protein stability and amino-acid frequencies. Genome Biol 2:1–12CrossRefGoogle Scholar
  24. 24.
    Lunde CS, Rouhani S, Remis JP et al (2005) UV microscopy at 280 nm is effective in screening for the growth of protein microcrystals. J Appl Crystallogr 38:1031–1034CrossRefGoogle Scholar
  25. 25.
    Gill H (2010) Evaluating the efficacy of tryptophan fluorescence and absorbance as a selection tool for identifying protein crystals. Acta Crystallogr F Struct Biol Commun 66:364–372CrossRefGoogle Scholar
  26. 26.
    Calero G, Cohen AE, Luft JR et al (2014) Identifying, studying and making good use of macromolecular crystals. Acta Crystallogr F Struct Biol Commun 70:993–1008PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Chavas LMG, Yamada Y, Hiraki M et al (2011) UV LED lighting for automated crystal centring. J Synchrotron Radiat 18:11–15PubMedCrossRefGoogle Scholar
  28. 28.
    Ravelli RBG, Leiros H-KS, Pan B et al (2003) Specific radiation damage can be used to solve macromolecular crystal structures. Structure 11:217–224PubMedCrossRefGoogle Scholar
  29. 29.
    de Sanctis D, Zubieta C, Felisaz F et al (2016) Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes. Acta Crystallogr D Biol Crystallogr 72:395–402CrossRefGoogle Scholar
  30. 30.
    Snell EH, van der Woerd MJ, Miller MD et al (2005) Finding a cold needle in a warm haystack: infrared imaging applied to locating cryocooled crystals in loops. J Appl Crystallogr 38:69–77CrossRefGoogle Scholar
  31. 31.
    Newman JA, Zhang S, Sullivan SZ et al (2016) Guiding synchrotron X-ray diffraction by multimodal video-rate protein crystal imaging. J Synchrotron Radiat 23:959–965PubMedCrossRefGoogle Scholar
  32. 32.
    Glassford SE, Byrne B, Kazarian SG (2013) Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochim Biophys Acta 1834:2849–2858PubMedCrossRefGoogle Scholar
  33. 33.
    Echalier A, Glazer RL, Fulop V et al (2004) Assessing crystallization droplets using birefringence. Acta Crystallogr D Biol Crystallogr 60:696–702PubMedCrossRefGoogle Scholar
  34. 34.
    Eftink MR (1991) Fluorescence techniques for studying protein structure. In: Suelter CH (ed) Methods of biochemical analysis: protein structure determination, vol 35. John Wiley & Sons, Inc., New York, pp 127–205Google Scholar
  35. 35.
    Callis PR, Vivian JT (2003) Understanding the variable fluorescence quantum yield of tryptophan in proteins using QM-MM simulations. Quenching by charge transfer to the peptide backbone. Chem Phys Lett 369:409–414CrossRefGoogle Scholar
  36. 36.
    Judge RA, Swift K, Gonzalez C (2005) An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals. Acta Crystallogr D Biol Crystallogr 61:60–66PubMedCrossRefGoogle Scholar
  37. 37.
    Desbois S, Seabrook SA, Newman J (2013) Some practical guidelines for UV imaging in the protein crystallization laboratory. Acta Crystallogr F Struct Biol Commun 69:201–208CrossRefGoogle Scholar
  38. 38.
    Ediger MD, Moog RS, Boxer SG et al (1982) On the refractive index correction in luminescence spectroscopy. Chem Phys Lett 88:123–127CrossRefGoogle Scholar
  39. 39.
    Pohl E, Ristau U, Gehrmann T et al (2004) Automation of the EMBL Hamburg protein crystallography beamline BW7B. J Synchrotron Radiat 11:372–377PubMedCrossRefGoogle Scholar
  40. 40.
    Vernede X, Lavault B, Ohana J et al (2006) UV laser-excited fluorescence as a tool for the visualization of protein crystals mounted in loops. Acta Crystallogr D Biol Crystallogr 62:253–261PubMedCrossRefGoogle Scholar
  41. 41.
    Gofron KJ, Duke NEC (2011) Using X-ray excited UV fluorescence for biological crystal location. Nucl Instrum Methods A 649:216–218CrossRefGoogle Scholar
  42. 42.
    Madden JT, DeWalt EL, Simpson GJ (2011) Two-photon excited UV fluorescence for protein crystal detection. Acta Crystallogr D Biol Crystallogr 67:839–846PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Madden JT, Toth SJ, Dettmar CM et al (2013) Integrated nonlinear optical imaging microscope for on-axis crystal detection and centering at a synchrotron beamline. J Synchrotron Radiat 20:531–540PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Shukla A, Mukherjee S, Sharma S et al (2004) A novel UV laser-induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding? Arch Biochem Biophys 428:144–153PubMedCrossRefGoogle Scholar
  45. 45.
    Lukk T, Gillilan RE, Szebenyi DME et al (2016) A visible-light-excited fluorescence method for imaging protein crystals without added dyes. J Appl Crystallogr 49:234–240PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sumner JB, Dounce AL (1937) Crystalline catalase. Science 85:366–367PubMedCrossRefGoogle Scholar
  47. 47.
    Meyer A, Betzel C, Pusey M (2015) Latest methods of fluorescence-based protein crystal identification. Acta Crystallogr F Struct Biol Commun 71:121–131PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Groves MR, Muller IB, Kreplin X et al (2007) A method for the general identification of protein crystals in crystallization experiments using a noncovalent fluorescent dye. Acta Crystallogr D Biol Crystallogr 63:526–535PubMedCrossRefGoogle Scholar
  49. 49.
    Watts D, Muller-Dieckmann J, Tsakanova G et al (2010) Quantitive evaluation of macromolecular crystallization experiments using 1,8-ANS fluorescence. Acta Crystallogr D Biol Crystallogr 66:901–908PubMedCrossRefGoogle Scholar
  50. 50.
    Forsythe E, Achari A, Pusey ML (2006) Trace fluorescent labeling for high-throughput crystallography. Acta Crystallogr D Biol Crystallogr 62:339–346PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Pusey M, Barcena J, Morris M et al (2015) Trace fluorescent labeling for protein crystallization. Acta Crystallogr F Struct Biol Commun 71:806–814PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Suzuki N, Hiraki M, Yamada Y et al (2010) Crystallization of small proteins assisted by green fluorescent protein. Acta Crystallogr D Biol Crystallogr 66:1059–1066PubMedCrossRefGoogle Scholar
  53. 53.
    Karain WI, Bourenkov GP, Blume H et al (2002) Automated mounting, centering and screening of crystals for high-throughput protein crystallography. Acta Crystallogr D Biol Crystallogr 58:1519–1522PubMedCrossRefGoogle Scholar
  54. 54.
    Stepanov S, Hilgart M, Yoder D et al (2011) Fast fluorescence techniques for crystallography beamlines. J Appl Crystallogr 44:772–778PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wampler RD, Kissick DJ, Dehen CJ et al (2008) Selective detection of protein crystals by second harmonic microscopy. J Am Chem Soc 130:14076–14077PubMedCrossRefGoogle Scholar
  56. 56.
    Kissick DJ, Dettmar CM, Becker M et al (2013) Towards protein-crystal centering using second-harmonic generation (SHG) microscopy. Acta Crystallogr D Biol Crystallogr 69:843–851PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Moad AJ, Moad CW, Perry JM et al (2007) NLOPredict: visualization and data analysis software for nonlinear optics. J Comput Chem 28:1996–2002PubMedCrossRefGoogle Scholar
  58. 58.
    Haupert LM, DeWalt EL, Simpson GJ (2012) Modeling the SHG activities of diverse protein crystals. Acta Crystallogr D Biol Crystallogr 68:1513–1521PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Haupert L, Simpson G (2011) Screening of protein crystallization trials by second order nonlinear optical imaging of chiral crystals (SONICC). Methods 55:379–386PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kissick DJ, Gualtieri EJ, Simpson GJ et al (2010) Nonlinear optical imaging of integral membrane protein crystals in lipidic mesophases. Anal Chem 82:491–497PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    DeWalt EL, Begue VJ, Ronau JA et al (2013) Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains. Acta Crystallogr D Biol Crystallogr 69:74–81PubMedCrossRefGoogle Scholar
  62. 62.
    Closser RG, Gualtieri EJ, Newman JA et al (2013) Characterization of salt interferences in second-harmonic generation detection of protein crystals. J Appl Crystallogr 46:1903–1906PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Newman JA, Scarborough NM, Pogranichniy NR et al (2015) Intercalating dyes for enhanced contrast in second-harmonic generation imaging of protein crystals. Acta Crystallogr D Biol Crystallogr 71:1471–1477PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Dettmar CM, Newman JA, Toth SJ et al (2015) Imaging local electric fields produced upon synchrotron X-ray exposure. Proc Natl Acad Sci U S A 112:696–701PubMedCrossRefGoogle Scholar
  65. 65.
    Song J, Mathew D, Jacob SA et al (2007) Diffraction-based automated crystal centering. J Synchrotron Radiat 14:191–195PubMedCrossRefGoogle Scholar
  66. 66.
    Cherezov V, Hanson MA, Griffith MT et al (2009) Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 micron size X-ray synchrotron beam. J R Soc Interface 6(Suppl 5):S587–S597PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Bowler MW, Guijarro M, Petitdemange S et al (2010) Diffraction cartography: applying microbeams to macromolecular crystallography sample evaluation and data collection. Acta Crystallogr D Biol Crystallogr 66:855–864PubMedCrossRefGoogle Scholar
  68. 68.
    Aishima J, Owen RL, Axford D et al (2010) High-speed crystal detection and characterization using a fast-readout detector. Acta Crystallogr D Biol Crystallogr 66:1032–1035PubMedCrossRefGoogle Scholar
  69. 69.
    Hilgart MC, Sanishvili R, Ogata CM et al (2011) Automated sample-scanning methods for radiation damage mitigation and diffraction-based centering of macromolecular crystals. J Synchrotron Radiat 18:717–722PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Stevenson HP, Lin G, Barnes CO et al (2016) Transmission electron microscopy for the evaluation and optimization of crystal growth. Acta Crystallogr D Biol Crystallogr 72:603–615CrossRefGoogle Scholar
  71. 71.
    Shi D, Nannenga BL, de la Cruz MJ et al (2016) The collection of MicroED data for macromolecular crystallography. Nat Protoc 11:895–904PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Shi D, Nannenga BL, Iadanza MG et al (2013) Three-dimensional electron crystallography of protein microcrystals. elife 2:e01345PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Rodriguez JA, Gonen T (2016) High-resolution macromolecular structure determination by MicroED, a cryo-EM method. Methods Enzymol 579:369–392PubMedCrossRefGoogle Scholar
  74. 74.
    Warren AJ, Armour W, Axford D et al (2013) Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging. Acta Crystallogr D Biol Crystallogr 69:1252–1259PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nishizawa N, Ishida S, Hirose M et al (2012) Three-dimensional, non-invasive, cross-sectional imaging of protein crystals using ultrahigh resolution optical coherence tomography. Biomed Opt Express 3:735–740PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Nitahara S, Maeki M, Yamaguchi H et al (2012) Three-dimensional Raman spectroscopic imaging of protein crystals deposited on a nanodroplet. Analyst 137:5730–5735PubMedCrossRefGoogle Scholar
  77. 77.
    Owen RL, Juanhuix J, Fuchs M (2016) Current advances in synchrotron radiation instrumentation for MX experiments. Arch Biochem Biophys 602:21–31PubMedCrossRefGoogle Scholar
  78. 78.
    Kawabata K, Takahashi M, Saitoh K et al (2006) Evaluation of crystalline objects in crystallizing protein droplets based on line-segment information in greyscale images. Acta Crystallogr D Biol Crystallogr 62:239–245PubMedCrossRefGoogle Scholar
  79. 79.
    Pan S, Shavit G, Penas-Centeno M et al (2006) Automated classification of protein crystallization images using support vector machines with scale-invariant texture and Gabor features. Acta Crystallogr D Biol Crystallogr 62:271–279PubMedCrossRefGoogle Scholar
  80. 80.
    Lavault B, Ravelli RBG, Cipriani F (2006) C3D: a program for the automated centring of cryocooled crystals. Acta Crystallogr D Biol Crystallogr 62:1348–1357PubMedCrossRefGoogle Scholar
  81. 81.
    Pothineni SB, Strutz T, Lamzin VS (2006) Automated detection and centring of cryocooled protein crystals. Acta Crystallogr D Biol Crystallogr 62:1358–1368PubMedCrossRefGoogle Scholar
  82. 82.
    Sullivan SZ, Muir RD, Newman JA et al (2014) High frame-rate multichannel beam-scanning microscopy based on Lissajous trajectories. Opt Express 22:24224–24234PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Bingel-Erlenmeyer R, Olieric V, Grimshaw JPA et al (2011) SLS crystallization platform at beamline X06DA—a fully automated pipeline enabling in situ X-ray diffraction screening. Cryst Growth Des 11:916–923CrossRefGoogle Scholar
  84. 84.
    Yamada Y, Hiraki M, Matsugaki N et al (2016) In-situ data collection at the photon factory macromolecular crystallography beamlines. AIP Conf Proc 1741:050023CrossRefGoogle Scholar
  85. 85.
    Huang C-Y, Olieric V, Ma P et al (2015) In meso in situ serial X-ray crystallography of soluble and membrane proteins. Acta Crystallogr D Biol Crystallogr 71:1238–1256PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Huang C-Y, Olieric V, Ma P et al (2016) In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures. Acta Crystallogr D Biol Crystallogr 72:93–112CrossRefGoogle Scholar
  87. 87.
    Murray TD, Lyubimov AY, Ogata CM et al (2015) A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions. Acta Crystallogr D Biol Crystallogr 71:1987–1997PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lyubimov AY, Murray TD, Koehl A et al (2015) Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array. Acta Crystallogr D Biol Crystallogr 71:928–940PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Roedig P, Vartiainen I, Duman R et al (2015) A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Sci Rep 5:10451PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kisselman G, Qiu W, Romanov V et al (2011) X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection. Acta Crystallogr D Biol Crystallogr 67:533–539PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Yadav MK, Gerdts CJ, Sanishvili R et al (2005) In situ data collection and structure refinement from microcapillary protein crystallization. J Appl Crystallogr 38:900–905PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Gerdts CJ, Elliott M, Lovell S et al (2008) The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS). Acta Crystallogr D Biol Crystallogr 64:1116–1122PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Baxter EL, Aguila L, Alonso-Mori R et al (2016) High-density grids for efficient data collection from multiple crystals. Acta Crystallogr D Biol Crystallogr 72:2–11CrossRefGoogle Scholar
  94. 94.
    Maeki M, Pawate AS, Yamashita K et al (2015) A method of cryoprotection for protein crystallography by using a microfluidic chip and its application for in situ X-ray diffraction measurements. Anal Chem 87:4194–4200PubMedCrossRefGoogle Scholar
  95. 95.
    Pawate AS, Srajer V, Schieferstein J et al (2015) Towards time-resolved serial crystallography in a microfluidic device. Acta Crystallogr F Struct Biol Commun 71:823–830PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Sui S, Wang Y, Kolewe KW et al (2016) Graphene-based microfluidics for serial crystallography. Lab Chip 16:3082–3096PubMedCrossRefGoogle Scholar
  97. 97.
    Axford D, Foadi J, Hu N-J et al (2015) Structure determination of an integral membrane protein at room temperature from crystals in situ. Acta Crystallogr D Biol Crystallogr 71:1228–1237PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Boutet S, Lomb L, Williams GJ et al (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    DePonte DP, Weierstall U, Schmidt K et al (2008) Gas dynamic virtual nozzle for generation of microscopic droplet streams. J Phys D 41:195505CrossRefGoogle Scholar
  100. 100.
    Johansson LC, Arnlund D, White TA et al (2012) Lipidic phase membrane protein serial femtosecond crystallography. Nat Methods 9:263–265PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Sierra RG, Laksmono H, Kern J et al (2012) Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallogr D Biol Crystallogr 68:1584–1587PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Liu W, Wacker D, Gati C et al (2013) Serial femtosecond crystallography of G protein-coupled receptors. Science 342:1521–1524PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Stellato F, Oberthur D, Liang M et al (2014) Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ 1:204–212PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Gati C, Bourenkov G, Klinge M et al (2014) Serial crystallography on in vivo grown microcrystals using synchrotron radiation. IUCrJ 1:87–94PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Roessler CG, Agarwal R, Allaire M et al (2016) Acoustic injectors for drop-on-demand serial femtosecond crystallography. Structure 24:631–640PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Nannenga BL, Shi D, Leslie AGW et al (2014) High-resolution structure determination by continuous-rotation data collection in MicroED. Nat Methods 11:927–930PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Stevens A, Kovarik L, Abellan P et al (2015) Applying compressive sensing to TEM video: a substantial frame rate increase on any camera. Adv Struct Chem Imaging 1:1–20CrossRefGoogle Scholar
  108. 108.
    Kiefersauer R, Grandl B, Krapp S et al (2014) IR laser-induced protein crystal transformation. Acta Crystallogr D Biol Crystallogr 70:1224–1232PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Cheng Y (2015) Single-particle cryo-EM at crystallographic resolution. Cell 161:450–457PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Becker M, Weckert E (2012) On the possibility of determining structures of membrane proteins in two-dimensional crystals using X-ray free electron lasers. In: Cheng RH, Hammar L (eds) Conformational proteomics of macromolecular architecture. World Scientific, Singapore, pp 133–147Google Scholar
  111. 111.
    Hirata K, Shinzawa-Itoh K, Yano N et al (2014) Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nat Methods 11:734–736PubMedCrossRefGoogle Scholar
  112. 112.
    Cohen AE, Soltis SM, González A et al (2014) Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proc Natl Acad Sci U S A 111:17122–17127PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.GM/CA@APS, Advanced Photon SourceArgonne National LaboratoryArgonneUSA

Personalised recommendations