Advertisement

Crystallization of Membrane Proteins: An Overview

  • Andrii Ishchenko
  • Enrique E. Abola
  • Vadim Cherezov
Part of the Methods in Molecular Biology book series (MIMB, volume 1607)

Abstract

Membrane proteins are crucial components of cellular membranes and are responsible for a variety of physiological functions. The advent of new tools and technologies for structural biology of membrane proteins has led to a significant increase in the number of structures deposited to the Protein Data Bank during the past decade. This new knowledge has expanded our fundamental understanding of their mechanism of function and contributed to the drug-design efforts. In this chapter we discuss current approaches for membrane protein expression, solubilization, crystallization, and data collection. Additionally, we describe the protein quality-control assays that are often instrumental as a guideline for a shorter path toward the structure.

Key words

Membrane protein Expression Crystallization Detergent In meso In surfo HiLiDe Lipidic cubic phase Lipidic sponge phase Bicelle Nanodisc Amphipol FRAP Thermal shift assay 

References

  1. 1.
    Yildirim MA, Goh K-I, Cusick ME et al (2007) Drug-target network. Nat Biotechnol 25:1119–1126PubMedCrossRefGoogle Scholar
  2. 2.
    Ujwal R, Bowie JU (2011) Crystallizing membrane proteins using lipidic bicelles. Methods 55:337–341PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4:706–731PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Gourdon P, Andersen JL, Hein KL et al (2011) HiLiDe—systematic approach to membrane protein crystallization in lipid and detergent. Cryst Growth Des 11:2098–2106CrossRefGoogle Scholar
  5. 5.
    Newby ZER, O’Connell JD, Gruswitz F et al (2009) A general protocol for the crystallization of membrane proteins for X-ray structural investigation. Nat Protoc 4:619–637PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Liu W, Cherezov V (2011) Crystallization of membrane proteins in lipidic mesophases. J Vis Exp:e2501Google Scholar
  7. 7.
    Caffrey M, Porter C (2010) Crystallizing membrane proteins for structure determination using lipidic mesophases. J Vis Exp:e1712Google Scholar
  8. 8.
    Li D, Boland C, Aragao D et al (2012) Harvesting and cryo-cooling crystals of membrane proteins grown in lipidic mesophases for structure determination by macromolecular crystallography. J Vis Exp:e4001Google Scholar
  9. 9.
    Ujwal R, Abramson J (2012) High-throughput crystallization of membrane proteins using the lipidic bicelle method. J Vis Exp:e3383Google Scholar
  10. 10.
    Li D, Boland C, Walsh K et al (2012) Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases. J Vis Exp:e4000Google Scholar
  11. 11.
    Luecke H, Schobert B, Richter HT et al (1999) Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol 291:899–911PubMedCrossRefGoogle Scholar
  12. 12.
    Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745PubMedCrossRefGoogle Scholar
  13. 13.
    Deisenhofer J, Epp O, Miki K et al (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:618–624PubMedCrossRefGoogle Scholar
  14. 14.
    Ghosh E, Kumari P, Jaiman D et al (2015) Methodological advances: the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol 16:69–81PubMedCrossRefGoogle Scholar
  15. 15.
    Alexandrov AI, Mileni M, Chien EYT et al (2008) Microscale fluorescent thermal stability assay for membrane proteins. Structure 16:351–359PubMedCrossRefGoogle Scholar
  16. 16.
    Chen R (2012) Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv 30:1102–1107PubMedCrossRefGoogle Scholar
  17. 17.
    Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234PubMedCrossRefGoogle Scholar
  18. 18.
    Studier FW (2014) Stable expression clones and auto-induction for protein production in E. coli. Methods Mol Biol 1091:17–32PubMedCrossRefGoogle Scholar
  19. 19.
    Newton-Vinson P, Hubalek F, Edmondson DE (2000) High-level expression of human liver monoamine oxidase B in Pichia pastoris. Protein Expr Purif 20:334–345PubMedCrossRefGoogle Scholar
  20. 20.
    Jin MSM, Oldham MML, Zhang Q et al (2012) Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490:566–569PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Tao X, Avalos JL, Chen J et al (2009) Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science 326:1668–1674PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Brohawn SG, del Mármol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335:436–441PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Whorton MR, MacKinnon R (2011) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G Ppoteins, PIP2, and sodium. Cell 147:199–208PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Shimamura T, Shiroishi M, Weyand S et al (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475:65–70PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    He Y, Wang K, Yan N (2014) The recombinant expression systems for structure determination of eukaryotic membrane proteins. Protein Cell 5:658–672PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F et al (2014) Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 30:1–18PubMedCrossRefGoogle Scholar
  27. 27.
    Harrison RL, Jarvis DL (2006) Protein N-glycosylation in the baculovirus–insect cell expression system and engineering of insect cells to produce “mammalianized” recombinant glycoproteins. Adv Virus Res 68:159–191PubMedCrossRefGoogle Scholar
  28. 28.
    Lopez M, Tetaert D, Juliant S et al (1999) O-Glycosylation potential of lepidopteran insect cell lines. Biochim Biophys Acta 1427:49–61PubMedCrossRefGoogle Scholar
  29. 29.
    Ciccarone VC, Polayes DA, Luckow VA (1998) Generation of recombinant baculovirus DNA in E. coli using a baculovirus shuttle vector. Methods Mol Med 13:213–235PubMedGoogle Scholar
  30. 30.
    Hanson MA, Brooun A, Baker KA et al (2007) Profiling of membrane protein variants in a baculovirus system by coupling cell-surface detection with small-scale parallel expression. Protein Expr Purif 56:85–92PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Andréll J, Tate CG (2013) Overexpression of membrane proteins in mammalian cells for structural studies. Mol Membr Biol 30:52–63PubMedCrossRefGoogle Scholar
  32. 32.
    Tate CG (2001) Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett 504:94–98PubMedCrossRefGoogle Scholar
  33. 33.
    Privé GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397PubMedCrossRefGoogle Scholar
  34. 34.
    Annalora AJ, Goodin DB, Hong W-X et al (2010) Crystal structure of CYP24A1, a mitochondrial cytochrome P450 involved in vitamin D metabolism. J Mol Biol 396:441–451PubMedCrossRefGoogle Scholar
  35. 35.
    Newstead S, Iwata SO (2008) Rationalizing a-helical membrane protein crystallization. Protein Sci 17:466–472PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Chae PS, Kruse AC, Gotfryd K et al (2013) Novel tripod amphiphiles for membrane protein analysis. Chemistry 19:15645–15651PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zhang Q, Ma X, Ward A et al (2007) Designing facial amphiphiles for the stabilization of integral membrane proteins. Angew Chem Int Ed 46:7023–7025CrossRefGoogle Scholar
  38. 38.
    Ehsan M, Du Y, Scull NJ et al (2016) Highly branched pentasaccharide-bearing amphiphiles for membrane protein studies. J Am Chem Soc 138:3789–3796PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Chae PS, Rasmussen SGF, Rana RR et al (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7:1003–1008PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Rosenbaum DM, Zhang C, Lyons JA et al (2011) Structure and function of an irreversible agonist-β(2) adrenoceptor complex. Nature 469:236–240PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Haga K, Kruse AC, Asada H et al (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wang H, Goehring A, Wang KH et al (2013) Structural basis for action by diverse antidepressants on biogenic amine transporters. Nature 503:141–145PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    McGregor C-L, Chen L, Pomroy NC et al (2003) Lipopeptide detergents designed for the structural study of membrane proteins. Nat Biotechnol 21:171–176PubMedCrossRefGoogle Scholar
  44. 44.
    Sadaf A, Cho KH, Byrne B, Chae PS (2015) Amphipathic agents for membrane protein study. Methods Enzymol 557:57–94PubMedCrossRefGoogle Scholar
  45. 45.
    Zhao X, Nagai Y, Reeves PJ et al (2006) Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin. Proc Natl Acad Sci U S A 103:17707–17712PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci U S A 93:15047–15050PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Popot J-L (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775PubMedCrossRefGoogle Scholar
  48. 48.
    Polovinkin V, Gushchin I, Sintsov M et al (2014) High-resolution structure of a membrane protein transferred from amphipol to a lipidic mesophase. J Membr Biol 247:997–1004PubMedCrossRefGoogle Scholar
  49. 49.
    Bayburt TH, Sligar SG (2010) Membrane protein assembly into nanodiscs. FEBS Lett 584:1721–1727PubMedCrossRefGoogle Scholar
  50. 50.
    Hagn F, Etzkorn M, Raschle T et al (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919–1925PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856CrossRefGoogle Scholar
  52. 52.
    Ritchie TK, Grinkova YV, Bayburt TH et al (2009) Chapter 11—Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Glück JM, Wittlich M, Feuerstein S et al (2009) Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. J Am Chem Soc 131:12060–12061PubMedCrossRefGoogle Scholar
  54. 54.
    Kang HJ, Lee C, Drew D (2013) Breaking the barriers in membrane protein crystallography. Int J Biochem Cell Biol 45:636–644PubMedCrossRefGoogle Scholar
  55. 55.
    Dupeux F, Röwer M, Seroul G et al (2011) A thermal stability assay can help to estimate the crystallization likelihood of biological samples. Acta Crystallogr D Biol Crystallogr 67:915–919PubMedCrossRefGoogle Scholar
  56. 56.
    Hunte C, Koepke J, Lange C et al (2000) Structure at 2.3 Å resolution of the cytochrome bc1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure 8:669–684PubMedCrossRefGoogle Scholar
  57. 57.
    Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Zhou Y, Morais-Cabral JH, Kaufman A et al (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414:43–48PubMedCrossRefGoogle Scholar
  59. 59.
    Fang Y, Jayaram H, Shane T et al (2009) Structure of a prokaryotic virtual proton pump at 3.2 A resolution. Nature 460:1040–1043PubMedPubMedCentralGoogle Scholar
  60. 60.
    De Genst E, Silence K, Decanniere K et al (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A 103:4586–4591PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Rasmussen SGF, Choi H-J, Fung JJ et al (2011) Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature 469:175–180PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Ring AM, Manglik A, Kruse AC et al (2013) Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 502:575–579PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Geertsma ER, Chang Y-N, Shaik FR et al (2015) Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol 22:803–808PubMedCrossRefGoogle Scholar
  64. 64.
    Chun E, Thompson AA, Liu W et al (2012) Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20:967–976PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Rosenbaum DM, Cherezov V, Hanson MA et al (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273PubMedCrossRefGoogle Scholar
  66. 66.
    Serrano-Vega MJ, Magnani F, Shibata Y et al (2008) Conformational thermostabilization of the 1-adrenergic receptor in a detergent-resistant form. Proc Natl Acad Sci U S A 105:877–882PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Warne T, Edwards PC, Leslie AGW et al (2012) Crystal structures of a stabilized β1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 20:841–849PubMedCrossRefGoogle Scholar
  68. 68.
    Magnani F, Shibata Y, Serrano-Vega MJ et al (2008) Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor. Proc Natl Acad Sci U S A 105:10744–10749PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Klenk C, Ehrenmann J, Schütz M et al (2016) A generic selection system for improved expression and thermostability of G protein-coupled receptors by directed evolution. Sci Rep 6:21294PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Sarkar CA, Dodevski I, Kenig M et al (2008) Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. Proc Natl Acad Sci U S A 105:14808–14813PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Malawski GA, Hillig RC, Monteclaro F et al (2006) Identifying protein construct variants with increased crystallization propensity—a case study. Protein Sci 15:2718–2728PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221PubMedCrossRefGoogle Scholar
  73. 73.
    Semisotnov GV, Rodionova NA, Razgulyaev OI et al (1991) Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31:119–128PubMedCrossRefGoogle Scholar
  74. 74.
    Tomasiak TM, Pedersen BP, Chaudhary S et al (2014) General qPCR and plate reader methods for rapid optimization of membrane protein purification and crystallization using thermostability assays. Curr Protoc Protein Sci 77:29.11.1–29.11.14CrossRefGoogle Scholar
  75. 75.
    Mancusso R, Karpowich NK, Czyzewski BK et al (2011) Simple screening method for improving membrane protein thermostability. Methods 55:324–329PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Hattori M, Hibbs RE, Gouaux E (2012) A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure 20:1293–1299PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A 93:14532–14535PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Cherezov V (2011) Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol 21:559–566PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Parker JL, Newstead S (2012) Current trends in α-helical membrane protein crystallization: an update. Protein Sci 21:1358–1365PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Raman P, Cherezov V, Caffrey M (2006) The membrane protein data Bank. Cell Mol Life Sci 63:36–51PubMedCrossRefGoogle Scholar
  81. 81.
    Wadsten P, Wöhri AB, Snijder A et al (2006) Lipidic sponge phase crystallization of membrane proteins. J Mol Biol 364:44–53PubMedCrossRefGoogle Scholar
  82. 82.
    Cherezov V, Clogston J, Papiz MZ et al (2006) Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J Mol Biol 357:1605–1618PubMedCrossRefGoogle Scholar
  83. 83.
    Faham S, Bowie JU (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol 316:1–6PubMedCrossRefGoogle Scholar
  84. 84.
    Rouhani S, Cartailler JP, Facciotti MT et al (2001) Crystal structure of the D85S mutant of bacteriorhodopsin: model of an O-like photocycle intermediate. J Mol Biol 313:615–628PubMedCrossRefGoogle Scholar
  85. 85.
    Cherezov V, Fersi H, Caffrey M (2001) Crystallization screens: compatibility with the lipidic cubic phase for in meso crystallization of membrane proteins. Biophys J 81:225–242PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Li L, Fu Q, Kors CA et al (2010) A plug-based microfluidic system for dispensing lipidic cubic phase (LCP) material validated by crystallizing membrane proteins in lipidic mesophases. Microfluid Nanofluidics 8:789–798PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kang Y, Zhou XE, Gao X et al (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Rasmussen SGF, DeVree BT, Zou Y et al (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–555PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Caffrey M (2009) Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu Rev Biophys 38:29–51PubMedCrossRefGoogle Scholar
  90. 90.
    Caffrey M, Lyons J, Smyth T et al (2009) Monoacylglycerols: the workhorse lipids for crystallizing membrane proteins in mesophases. Curr Top Membr 63:83–108CrossRefGoogle Scholar
  91. 91.
    Li D, Lee J, Caffrey M (2011) Crystallizing membrane proteins in lipidic mesophases. A host lipid screen. Cryst Growth Des 11:530–537PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Li D, Shah STA, Caffrey M (2013) Host lipid and temperature as important screening variables for crystallizing integral membrane proteins in lipidic mesophases. Trials with diacylglycerol kinase. Cryst Growth Des 13:2846–2857PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Cherezov V, Clogston J, Misquitta Y et al (2002) Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. Biophys J 83:3393–3407PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Cheng A, Hummel B, Qiu H et al (1998) A simple mechanical mixer for small viscous lipid-containing samples. Chem Phys Lipids 95:11–21PubMedCrossRefGoogle Scholar
  95. 95.
    Cherezov V, Caffrey M (2005) A simple and inexpensive nanoliter-volume dispenser for highly viscous materials used in membrane protein crystallization. J Appl Crystallogr 38:398–400CrossRefGoogle Scholar
  96. 96.
    Cherezov V, Caffrey M (2003) Nano-volume plates with excellent optical properties for fast, inexpensive crystallization screening of membrane proteins. J Appl Crystallogr 36:1372–1377CrossRefGoogle Scholar
  97. 97.
    Weierstall U, James D, Wang C et al (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5:3309PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Cherezov V, Peddi A, Muthusubramaniam L et al (2004) A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases. Acta Crystallogr D Biol Crystallogr 60:1795–1807PubMedCrossRefGoogle Scholar
  99. 99.
    Li D, Caffrey M (2011) Lipid cubic phase as a membrane mimetic for integral membrane protein enzymes. Proc Natl Acad Sci U S A 108:8639–8644PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Liu W, Hanson MA, Stevens RC et al (2010) LCP-Tm: an assay to measure and understand stability of membrane proteins in a membrane environment. Biophys J 98:1539–1548PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Fenalti G, Abola EE, Wang C et al (2015) Fluorescence recovery after photobleaching in lipidic cubic phase (LCP-FRAP): a precrystallization assay for membrane proteins. Methods Enzymol 557:417–437PubMedCrossRefGoogle Scholar
  102. 102.
    Whiles JA, Deems R, Vold RR et al (2002) Bicelles in structure-function studies of membrane-associated proteins. Bioorg Chem 30:431–442PubMedCrossRefGoogle Scholar
  103. 103.
    Czerski L, Sanders CR (2000) Functionality of a membrane protein in bicelles. Anal Biochem 284:327–333PubMedCrossRefGoogle Scholar
  104. 104.
    De Angelis AA, Howell SC, Nevzorov AA et al (2006) Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy. J Am Chem Soc 128:12256–12267PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Sanders CR, Prosser RS (1998) Bicelles: a model membrane system for all seasons? Structure 6:1227–1234PubMedCrossRefGoogle Scholar
  106. 106.
    Katsaras J, Harroun TA, Pencer J et al (2005) “Bicellar” lipid mixtures as used in biochemical and biophysical studies. Naturwissenschaften 92:355–366PubMedCrossRefGoogle Scholar
  107. 107.
    Faham S, Boulting GL, Massey EA et al (2005) Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Protein Sci 14:836–840PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Luecke H, Schobert B, Stagno J et al (2008) Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci U S A 105:16561–16565PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Rasmussen SGF, Choi H-J, Rosenbaum DM et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387PubMedCrossRefGoogle Scholar
  110. 110.
    Vinothkumar KR (2011) Structure of rhomboid protease in a lipid environment. J Mol Biol 407:232–247PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Wang H, Elferich J, Gouaux E (2012) Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context. Nat Struct Mol Biol 19:212–219PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Chen S, Oldham ML, Davidson AL et al (2013) Carbon catabolite repression of the maltose transporter revealed by X-ray crystallography. Nature 499:364–368PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Payandeh J, Scheuer T, Zheng N et al (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Tang L, Gamal El-Din TM, Payandeh J et al (2014) Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505:56–61PubMedCrossRefGoogle Scholar
  115. 115.
    Ujwal R, Cascio D, Colletier J-P et al (2008) The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci U S A 105:17742–17747PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Gruss F, Zähringer F, Jakob RP et al (2013) The structural basis of autotransporter translocation by TamA. Nat Struct Mol Biol 20:1318–1320PubMedCrossRefGoogle Scholar
  117. 117.
    Liu S, Cheng W, Fowle Grider R et al (2014) Structures of an intramembrane vitamin K epoxide reductase homolog reveal control mechanisms for electron transfer. Nat Commun 5:3110PubMedPubMedCentralGoogle Scholar
  118. 118.
    Lee C-H, Lü W, Michel JC et al (2014) NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511:191–197PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Althoff T, Hibbs RE, Banerjee S et al (2014) X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors. Nature 512:333–337PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Malinauskaite L, Quick M, Reinhard L et al (2014) A mechanism for intracellular release of Na+ by neurotransmitter/sodium symporters. Nat Struct Mol Biol 21:1006–1012PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Wang K, Sitsel O, Meloni G et al (2014) Structure and mechanism of Zn2+-transporting P-type ATPases. Nature 514:518–522PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Andersson M, Mattle D, Sitsel O et al (2014) Copper-transporting P-type ATPases use a unique ion-release pathway. Nat Struct Mol Biol 21:43–48PubMedCrossRefGoogle Scholar
  123. 123.
    Kintzer AF, Stroud RM (2016) Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature 531:258–264PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Li L, Park E, Ling J et al (2016) Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature 531:395–399PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Parkin S, Hope H (1998) Macromolecular cryocrystallography: cooling, mounting, storage and transportation of crystals. J Appl Crystallogr 31:945–953CrossRefGoogle Scholar
  126. 126.
    Garman EF, Schneider TR (1997) Macromolecular cryocrystallography. J Appl Crystallogr 30:211–237CrossRefGoogle Scholar
  127. 127.
    Pflugrath JW (2004) Macromolecular cryocrystallography—methods for cooling and mounting protein crystals at cryogenic temperatures. Methods 34:415–423PubMedCrossRefGoogle Scholar
  128. 128.
    Joseph JS, Liu W, Kunken J et al (2011) Characterization of lipid matrices for membrane protein crystallization by high-throughput small angle X-ray scattering. Methods 55:342–349PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Cherezov V, Hanson MA, Griffith MT et al (2009) Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 μm size X-ray synchrotron beam. J R Soc Interface 6:S587–S597PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Kissick DJ, Dettmar CM, Becker M et al (2013) Towards protein-crystal centering using second-harmonic generation (SHG) microscopy. Acta Crystallogr D Biol Crystallogr 69:843–851PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Axford D, Foadi J, Hu NJ et al (2015) Structure determination of an integral membrane protein at room temperature from crystals in situ. Acta Crystallogr D Biol Crystallogr 71:1228–1237PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Axford D, Owen RL, Aishima J et al (2012) In situ macromolecular crystallography using microbeams. Acta Crystallogr D Biol Crystallogr 68:592–600PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Huang C-Y, Olieric V, Ma P et al (2016) In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures. Acta Crystallogr D Biol Crystallogr 72:93–112CrossRefGoogle Scholar
  134. 134.
    Chapman HN, Fromme P, Barty A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Spence JCH, Weierstall U, Chapman HN (2012) X-ray lasers for structural and dynamic biology. Rep Prog Phys 75:102601PubMedCrossRefGoogle Scholar
  136. 136.
    Liu W, Wacker D, Gati C et al (2013) Serial femtosecond crystallography of G protein-coupled receptors. Science 342:1521–1524PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Fenalti G, Zatsepin NA, Betti C et al (2015) Structural basis for bifunctional peptide recognition at human δ-opioid receptor. Nat Struct Mol Biol 22:265–268PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Zhang H, Unal H, Gati C et al (2015) Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell 161:833–844PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Nogly P, James D, Wang D et al (2015) Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ 2:168–176PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Wei X, Su X, Cao P et al (2016) Structure of spinach photosystem II—LHCII supercomplex at 3.2 A resolution. Nature 534:69–74PubMedCrossRefGoogle Scholar
  141. 141.
    Stevenson HP, Makhov AM, Calero M et al (2014) Use of transmission electron microscopy to identify nanocrystals of challenging protein targets. Proc Natl Acad Sci U S A 111:8470–8475PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Stevenson HP, DePonte DP, Makhov AM et al (2014) Transmission electron microscopy as a tool for nanocrystal characterization pre- and post-injector. Philos Trans R Soc Lond Ser B Biol Sci 369:20130322CrossRefGoogle Scholar
  143. 143.
    Barnes CO, Kovaleva EG, Fu X et al (2016) Assessment of microcrystal quality by transmission electron microscopy for efficient serial femtosecond crystallography. Arch Biochem Biophys 602:61–68PubMedCrossRefGoogle Scholar
  144. 144.
    Nannenga BL, Gonen T (2014) Protein structure determination by MicroED. Curr Opin Struct Biol 27:24–31PubMedCrossRefGoogle Scholar
  145. 145.
    Pande K, Hutchison CDM, Groenhof G et al (2016) Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725–729PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Andrii Ishchenko
    • 1
  • Enrique E. Abola
    • 1
  • Vadim Cherezov
    • 1
  1. 1.Department of ChemistryBridge Institute, University of Southern CaliforniaLos AngelesUSA

Personalised recommendations