Skip to main content

Boxes of Model Building and Visualization

  • Protocol
  • First Online:
Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

Macromolecular crystallography and electron microscopy (single-particle and in situ tomography) are merging into a single approach used by the two coalescing scientific communities. The merger is a consequence of technical developments that enabled determination of atomic structures of macromolecules by electron microscopy. Technological progress in experimental methods of macromolecular structure determination, computer hardware, and software changed and continues to change the nature of model building and visualization of molecular structures. However, the increase in automation and availability of structure validation are reducing interactive manual model building to fiddling with details. On the other hand, interactive modeling tools increasingly rely on search and complex energy calculation procedures, which make manually driven changes in geometry increasingly powerful and at the same time less demanding. Thus, the need for accurate manual positioning of a model is decreasing. The user’s push only needs to be sufficient to bring the model within the increasing convergence radius of the computing tools. It seems that we can now better than ever determine an average single structure. The tools work better, requirements for engagement of human brain are lowered, and the frontier of intellectual and scientific challenges has moved on. The quest for resolution of new challenges requires out-of-the-box thinking. A few issues such as model bias and correctness of structure, ongoing developments in parameters defining geometric restraints, limitations of the ideal average single structure, and limitations of Bragg spot data are discussed here, together with the challenges that lie ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartesaghi A, Merk A, Banerjee S et al (2015) 2.2 A resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitor. Science 348(6239):1147–1151. doi:10.1126/science.aab1576

    Article  CAS  PubMed  Google Scholar 

  2. Cheng YF (2015) Single-particle cryo-EM at crystallographic resolution. Cell 161(3):450–457. doi:10.1016/j.cell.2015.03.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Merk A, Bartesaghi A, Banerjee S et al (2016) Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165(7):1698–1707

    Article  CAS  PubMed  Google Scholar 

  4. Wlodawer A, Minor W, Dauter Z et al (2013) Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. FEBS J 280(22):5705–5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huber R (2013) How I chose research on proteases or, more correctly, how it chose me. Angew Chem 52(1):68–73. doi:10.1002/anie.201205629

    Article  CAS  Google Scholar 

  6. Deisenhofer J, Steigemann W (1975) Crystallographic refinement of structure of bovine pancreatic trypsin-inhibitor at 1.5 A resolution. Acta Crystallogr B 31:238–250. doi:10.1107/S0567740875002415

    Article  Google Scholar 

  7. Deisenhofer J, Remington SJ, Steigemann W (1985) Experience with various techniques for the refinement of protein structures. Methods Enzymol 115:303–323

    Article  CAS  PubMed  Google Scholar 

  8. Terwilliger TC, Grosse-Kunstleve RW, Afonine PV et al (2008) Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias. Acta Crystallogr D Biol Crystallogr 64(Pt 5):515–524. doi:10.1107/S0907444908004319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang BC (1985) Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol 115:90–112

    Article  CAS  PubMed  Google Scholar 

  10. Read RJ (1986) Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr A 42:140–149. doi:10.1107/S0108767386099622

    Article  Google Scholar 

  11. Jiang JS, Brunger AT (1994) Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. J Mol Biol 243(1):100–115. doi:10.1006/jmbi.1994.1633

    Article  CAS  PubMed  Google Scholar 

  12. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255. doi:10.1107/S0907444996012255

    Article  CAS  PubMed  Google Scholar 

  13. Rice LM, Shamoo Y, Brunger AT (1998) Phase improvement by multi-start simulated annealing refinement and structure-factor averaging. J Appl Crystallogr 31:798–805. doi:10.1107/S0021889898006645

    Article  CAS  Google Scholar 

  14. Praznikar J, Afonine PV, Guncar G et al (2009) Averaged kick maps: less noise, more signal... and probably less bias. Acta Crystallogr D Biol Crystallogr 65(Pt 9):921–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sheldrick GM (2010) Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D Biol Crystallogr 66(Pt 4):479–485. doi:10.1107/S0907444909038360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Afonine PV, Moriarty NW, Mustyakimov M et al (2015) FEM: feature-enhanced map. Acta Crystallogr D Biol Crystallogr 71(Pt 3):646–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Panjikar S, Parthasarathy V, Lamzin VS et al (2009) On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination. Acta Crystallogr D Biol Crystallogr 65:1089–1097. doi:10.1107/S0907444909029643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adams PD, Afonine PV, Bunkoczi G et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221. doi:10.1107/S0907444909052925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cowtan K (2006) The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62:1002–1011. doi:10.1107/S0907444906022116

    Article  PubMed  CAS  Google Scholar 

  20. Lamzin VS, Perrakis A, Wilson KS (2012) ARP/wARP—automated model building and refinement. In: Arnold E, Himmel DM, Rossmann MG (eds) International Tables for Crystallography, vol F: Crystallography of biological macromolecules, 2012th edn. Kluwer Academic Publishers, The Netherlands, pp 525–528

    Google Scholar 

  21. DiMaio F, Song Y, Li X et al (2015) Atomic-accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement. Nat Methods 12(4):361–365. doi:10.1038/nmeth.3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jones TA, Zou JY, Cowan SW et al (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47(Pt 2):110–119

    Article  PubMed  Google Scholar 

  23. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. 27–38

    Article  CAS  PubMed  Google Scholar 

  24. Emsley P, Lohkamp B, Scott WG et al (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66(Pt 4):486–501. doi:10.1107/S0907444910007493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Birmanns S, Rusu M, Wriggers W (2011) Using Sculptor and Situs for simultaneous assembly of atomic components into low-resolution shapes. J Struct Biol 173(3):428–435

    Article  CAS  PubMed  Google Scholar 

  26. Turk D (2013) MAIN software for density averaging, model building, structure refinement and validation. Acta Crystallogr D Biol Crystallogr 69(Pt 8):1342–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Engh RA, Huber R (2001) Structure quality and target parameters. In: Rossmann MG, Arnold E (eds) International Tables for Crystallography, vol F: Crystallography of biological macromolecules. Springer, Netherlands, pp 382–392

    Google Scholar 

  28. Parkinson G, Vojtechovsky J, Clowney L et al (1996) New parameters for the refinement of nucleic acid-containing structures. Acta Crystallogr D Biol Crystallogr 52(Pt 1):57–64

    Article  CAS  PubMed  Google Scholar 

  29. Moriarty NW, Tronrud DE, Adams PD et al (2016) A new default restraint library for the protein backbone in Phenix: a conformation-dependent geometry goes mainstream. Acta Crystallogr 72(Pt 1):176–179

    CAS  Google Scholar 

  30. Vagin AA, Steiner RA, Lebedev AA et al (2004) REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1):2184–2195. doi:10.1107/S0907444904023510

    Article  PubMed  CAS  Google Scholar 

  31. Schuttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60(Pt 8):1355–1363. doi:10.1107/S0907444904011679

    Article  PubMed  CAS  Google Scholar 

  32. Andrejasic M, Praznikar J, Turk D (2008) PURY: a database of geometric restraints of hetero compounds for refinement in complexes with macromolecular structures. Acta Crystallogr D Biol Crystallogr 64:1093–1109. doi:10.1107/S0907444908027388

    Article  CAS  PubMed  Google Scholar 

  33. Lebedev AA, Young P, Isupov MN et al (2012) JLigand: a graphical tool for the CCP4 template-restraint library. Acta Crystallogr D Biol Crystallogr 68:431–440. doi:10.1107/S090744491200251x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jones TA (1985) Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol 115:157–171

    Article  CAS  PubMed  Google Scholar 

  35. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  CAS  PubMed  Google Scholar 

  36. Chen VB, Arendall WB, Headd JJ et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21. doi:10.1107/S0907444909042073

    Article  CAS  PubMed  Google Scholar 

  37. Hintze BJ, Lewis SM, Richardson JS et al (2016) MolProbity’s ultimate rotamer-library distributions for model validation. Proteins. doi:10.1002/prot.25039

    PubMed  PubMed Central  Google Scholar 

  38. Lovell SC, Word JM, Richardson JS et al (2000) The penultimate rotamer library. Proteins 40(3):389–408. doi:10.1002/1097-0134(20000815)40:3<389::Aid-Prot50>3.0.Co;2-2

    Article  CAS  PubMed  Google Scholar 

  39. Scouras AD, Daggett V (2011) The Dynameomics rotamer library: amino acid side chain conformations and dynamics from comprehensive molecular dynamics simulations in water. Protein Sci 20(2):341–352. doi:10.1002/pro.565

    Article  CAS  PubMed  Google Scholar 

  40. Novotny M, Kleywegt GJ (2005) A survey of left-handed helices in protein structures. J Mol Biol 347(2):231–241. doi:10.1016/j.jmb.2005.01.037

    Article  CAS  PubMed  Google Scholar 

  41. Davis IW, Murray LW, Richardson JS et al (2004) MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res 32(Web Server issue):W615–W619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Andreeva A, Howorth D, Chothia C et al (2014) SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Res 42(D1):D310–D314. doi:10.1093/nar/gkt1242

    Article  CAS  PubMed  Google Scholar 

  43. Murzin AG, Brenner SE, Hubbard T et al (1995) Scop—a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536–540. doi:10.1016/S0022-2836(05)80134-2

    CAS  PubMed  Google Scholar 

  44. Branden CI, Tooze J (1998) Introduction to protein structure, 2nd edn. Garland Publishing, Inc., New York

    Google Scholar 

  45. Brocklehurst K, Kowlessur D, O'Driscoll M et al (1987) Substrate-derived two-protonic-state electrophiles as sensitive kinetic specificity probes for cysteine proteinases. Activation of 2-pyridyl disulphides by hydrogen-bonding. Biochem J 244(1):173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Musil D, Zucic D, Turk D et al (1991) The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J 10(9):2321–2330

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Praznikar J, Turk D (2014) Free kick instead of cross-validation in maximum-likelihood refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 70(Pt 12):3124–3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nwachukwu JC, Southern MR, Kiefer JR et al (2013) Improved crystallographic structures using extensive combinatorial refinement. Structure 21(11):1923–1930. doi:10.1016/j.str.2013.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fenn TD, Schnieders MJ, Mustyakimov M et al (2011) Reintroducing electrostatics into macromolecular crystallographic refinement: application to neutron crystallography and DNA hydration. Structure 19(4):523–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goddard TD, Ferrin TE (2007) Visualization software for molecular assemblies. Curr Opin Struct Biol 17(5):587–595. doi:10.1016/j.sbi.2007.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baugh EH, Lyskov S, Weitzner BD et al (2011) Real-time PyMOL visualization for Rosetta and PyRosetta. PLoS One 6(8):e21931. doi:10.1371/journal.pone.0021931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Langer GG, Hazledine S, Wiegels T et al (2013) Visual automated macromolecular model building. Acta Crystallogr D Biol Crystallogr 69(Pt 4):635–641. doi:10.1107/S0907444913000565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Subramanian G, Basu S, Liu H et al (2015) Solving protein nanocrystals by cryo-EM diffraction: multiple scattering artifacts. Ultramicroscopy 148:87–93

    Article  CAS  PubMed  Google Scholar 

  54. Perutz MF, Rossmann MG, Cullis AF et al (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature 185(4711):416–422

    Article  CAS  PubMed  Google Scholar 

  55. Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257(5521):28–32

    Article  CAS  PubMed  Google Scholar 

  56. Henderson R (2015) Overview and future of single particle electron cryomicroscopy. Arch Biochem Biophys 581:19–24

    Article  CAS  PubMed  Google Scholar 

  57. Croll TI, Smith BJ, Margetts MB et al (2016) Higher-resolution structure of the human insulin receptor ectodomain: multi-modal inclusion of the insert domain. Structure 24(3):469–476. doi:10.1016/j.str.2015.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McGreevy R, Teo I, Singharoy A et al (2016) Advances in the molecular dynamics flexible fitting method for cryo-EM modeling. Methods 100:50–60. doi:10.1016/j.ymeth.2016.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–402

    Article  CAS  PubMed  Google Scholar 

  60. Jones TA, Kjeldgaard M (1994) Making the first trace with O. In: Bailey S, Hubbard R, Waller D (eds) From first map to final model. SERC Daresbury Laboratory, Warrington, pp 1–13

    Google Scholar 

  61. Richardson JS, Richardson DC (1985) Interpretation of electron density maps. Methods Enzymol 115:189–206

    Article  CAS  PubMed  Google Scholar 

  62. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38(Web Server issue):W545–W549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jones TA, Thirup S (1986) Using known substructures in protein model building and crystallography. EMBO J 5(4):819–822

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Carolan CG, Lamzin VS (2014) Automated identification of crystallographic ligands using sparse-density representations. Acta Crystallogr D Biol Crystallogr 70:1844–1853. doi:10.1107/S1399004714008578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Echols N, Morshed N, Afonine PV et al (2014) Automated identification of elemental ions in macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 70(Pt 4):1104–1114. doi:10.1107/S1399004714001308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Klei HE, Moriarty NW, Echols N et al (2014) Ligand placement based on prior structures: the guided ligand-replacement method. Acta Crystallogr D Biol Crystallogr 70(Pt 1):134–143. doi:10.1107/S1399004713030071

    Article  CAS  PubMed  Google Scholar 

  68. Deller MC, Rupp B (2015) Models of protein-ligand crystal structures: trust, but verify. J Comput Aided Mol Des 29(9):817–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pozharski E, Weichenberger CX, Rupp B (2013) Techniques, tools and best practices for ligand electron-density analysis and results from their application to deposited crystal structures. Acta Crystallogr D Biol Crystallogr 69(Pt 2):150–167

    Article  CAS  PubMed  Google Scholar 

  70. Weichenberger CX, Pozharski E, Rupp B (2013) Visualizing ligand molecules in Twilight electron density. Acta Crystallogr Sect F Struct Biol Cryst Commun 69(Pt 2):195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Keedy DA, Fraser JS, van den Bedem H (2015) Exposing hidden alternative backbone conformations in X-ray crystallography using qFit. PLoS Comput Biol 11(10):e1004507. doi:10.1371/journal.pcbi.1004507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Davis IW, Leaver-Fay A, Chen VB et al (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383. doi:10.1093/nar/gkm216

    Article  PubMed  PubMed Central  Google Scholar 

  73. Usenik A, Renko M, Mihelič M, Lindič N, Borišek J, Perdih A, Pretnar G, Müller U, Turk D. The CWB2 cell wall-anchoring module is revealed by the 61 crystal structures of the clostridium difficile cell wall proteins Cwp8 and Cwp6. Structure 2017; 25(3): 514-521. doi: 10.1016/j.str.2016.12.018. Epub 2017 Jan 26.

    Google Scholar 

  74. van den Bedem H, Lotan I, Latombe JC et al (2005) Real-space protein-model completion: an inverse-kinematics approach. Acta Crystallogr D Biol Crystallogr 61(Pt 1):2–13. doi:10.1107/S0907444904025697

    Article  PubMed  CAS  Google Scholar 

  75. Brown A, Long F, Nicholls RA et al (2015) Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr D Biol Crystallogr 71(Pt 1):136–153. doi:10.1107/S1399004714021683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. van den Bedem H, Fraser JS (2015) Integrative, dynamic structural biology at atomic resolution—it’s about time. Nat Methods 12(4):307–318. doi:10.1038/nmeth.3324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Gros P, van Gunsteren WF, Hol WG (1990) Inclusion of thermal motion in crystallographic structures by restrained molecular dynamics. Science 249(4973):1149–1152

    Article  CAS  PubMed  Google Scholar 

  78. Levin EJ, Kondrashov DA, Wesenberg GE et al (2007) Ensemble refinement of protein crystal structures: validation and application. Structure 15(9):1040–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Burnley BT, Afonine PV, Adams PD et al (2012) Modelling dynamics in protein crystal structures by ensemble refinement. elife 1:e00311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Wall ME, Adams PD, Fraser JS et al (2014) Diffuse X-ray scattering to model protein motions. Structure 22(2):182–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Van Benschoten AH, Liu L, Gonzalez A et al (2016) Measuring and modeling diffuse scattering in protein X-ray crystallography. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1524048113

    PubMed  PubMed Central  Google Scholar 

  82. Ayyer K, Yefanov OM, Oberthur D et al (2016) Macromolecular diffractive imaging using imperfect crystals. Nature 530(7589):202–206. doi:10.1038/nature16949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Orlova EV, Saibil HR (2010) Methods for three-dimensional reconstruction of heterogeneous assemblies. Methods Enzymol 482:321–341

    Article  CAS  PubMed  Google Scholar 

  84. Alber F, Dokudovskaya S, Veenhoff LM et al (2007) The molecular architecture of the nuclear pore complex. Nature 450(7170):695–701. doi:10.1038/nature06405

    Article  CAS  PubMed  Google Scholar 

  85. Beck M, Forster F, Ecke M et al (2004) Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306(5700):1387–1390

    Article  CAS  PubMed  Google Scholar 

  86. Russel D, Lasker K, Webb B et al (2012) Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol 10(1):e1001244. doi:10.1371/journal.pbio.1001244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Baker D (2006) Prediction and design of macromolecular structures and interactions. Philos Trans R Soc Lond 361(1467):459–463

    Article  CAS  Google Scholar 

  88. Danev R, Buijsse B, Khoshouei M et al (2014) Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc Natl Acad Sci U S A 111(44):15635–15640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Asano S, Fukuda Y, Beck F et al (2015) Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science 347(6220):439–442

    Article  CAS  PubMed  Google Scholar 

  90. Schweitzer A, Aufderheide A, Rudack T et al (2016) Structure of the human 26S proteasome at a resolution of 3.9 A. Proc Natl Acad Sci U S A 113(28):7816–7821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Carson M, Bugg CE (1986) Algorithm for ribbon models of proteins. J Mol Graphics 4(2):121. doi:10.1016/0263-7855(86)80010-8

    Article  CAS  Google Scholar 

  92. Richardson JS (2000) Early ribbon drawings of proteins. Nat Struct Biol 7(8):624–625. doi:10.1038/77912

    Article  CAS  PubMed  Google Scholar 

  93. Lee B, Richards FM (1971) Interpretation of protein structures—estimation of static accessibility. Journal of molecular biology 55(3):379. doi:10.1016/0022-2836(71)90324-X

    Article  CAS  PubMed  Google Scholar 

  94. Connolly ML (1983) Solvent-accessible surfaces of proteins and nucleic-acids. Science 221(4612):709–713. doi:10.1126/science.6879170

    Article  CAS  PubMed  Google Scholar 

  95. Bernstein HJ, Craig PA (2010) Efficient molecular surface rendering by linear-time pseudo-Gaussian approximation to Lee-Richards surfaces (PGALRS). J Appl Crystallogr 43(Pt 2):356–361. doi:10.1107/S0021889809054326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bianchetti CM, Yi L, Ragsdale SW et al (2007) Comparison of apo- and heme-bound crystal structures of a truncated human heme oxygenase-2. J Biol Chem 282(52):37624–37631. doi:10.1074/jbc.M707396200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li L, Li C, Zhang Z et al (2013) On the dielectric “Constant” of proteins: smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J Chem Theory Comput 9(4):2126–2136. doi:10.1021/ct400065j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McNicholas S, Potterton E, Wilson KS et al (2011) Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 67(Pt 4):386–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bromberg S, Chiu W, Ferrin TE (2010) Workshop on molecular animation. Structure 18(10):1261–1265. doi:10.1016/j.str.2010.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Palmer AG, Matthews BW (2009) Interactive graphics return to protein science. Protein Sci 18(4):677

    Article  CAS  PubMed Central  Google Scholar 

  101. Barnes DG, Vidiassov M, Ruthensteiner B et al (2013) Embedding and publishing interactive, 3-dimensional, scientific figures in Portable Document Format (PDF) files. PLoS One 8(9):e69446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. DeLano WL (2009) PyMOL molecular viewer: updates and refinements. Abstr Pap Am Chem Soc 238

    Google Scholar 

  103. Chen VB, Davis IW, Richardson DC (2009) KING (Kinemage, Next Generation): a versatile interactive molecular and scientific visualization program. Protein Sci 18(11):2403–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Goddard TD, Huang CC, Ferrin TE (2007) Visualizing density maps with UCSF Chimera. J Struct Biol 157(1):281–287. doi:10.1016/j.jsb.2006.06.010

    Article  CAS  PubMed  Google Scholar 

  105. Lu XJ, Olson WK (2003) 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res 31(17):5108–5121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Martinez HM, Maizel JV Jr, Shapiro BA (2008) RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA. J Biomol Struct Dyn 25(6):669–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Couch GS, Hendrix DK, Ferrin TE (2006) Nucleic acid visualization with UCSF Chimera. Nucleic Acids Res 34(4):e29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Ashford P, Moss DS, Alex A et al (2012) Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets. BMC Bioinformatics 13:39. doi:10.1186/1471-2105-13-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Steinkellner G, Rader R, Thallinger GG et al (2009) VASCo: computation and visualization of annotated protein surface contacts. BMC Bioinformatics 10:32. doi:10.1186/1471-2105-10-32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Gabdoulline RR, Wade RC, Walther D (2003) MolSurfer: a macromolecular interface navigator. Nucleic Acids Res 31(13):3349–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lv ZH, Tek A, Da Silva F et al (2013) Game on, science—how video game technology may help biologists tackle visualization challenges. PLoS One 8(3). doi:10.1371/journal.pone.0057990

  112. Wahle M, Wriggers W (2015) Multi-scale visualization of molecular architecture using real-time ambient occlusion in sculptor. PLoS Comput Biol 11(10):e1004516. doi:10.1371/journal.pcbi.1004516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Moreland JL, Gramada A, Buzko OV et al (2005) The Molecular Biology Toolkit (MBT): a modular platform for developing molecular visualization applications. BMC Bioinformatics 6:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Autin L, Johnson G, Hake J et al (2012) uPy: a ubiquitous CG Python API with biological-modeling applications. IEEE Comput Graph Appl 32(5):50–61

    Article  PubMed  PubMed Central  Google Scholar 

  115. Johnson GT, Autin L, Goodsell DS et al (2011) ePMV embeds molecular modeling into professional animation software environments. Structure 19(3):293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Herraez A (2006) Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ 34(4):255–261

    Article  CAS  PubMed  Google Scholar 

  117. Voss NR, Gerstein M (2010) 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res 38(Web Server issue):W555–W562. doi:10.1093/nar/gkq395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jo S, Vargyas M, Vasko-Szedlar J et al (2008) PBEQ-Solver for online visualization of electrostatic potential of biomolecules. Nucleic Acids Res 36 (Web Server issue):W270–W275. doi:10.1093/nar/gkn314

  119. Rose AS, Hildebrand PW (2015) NGL Viewer: a web application for molecular visualization. Nucleic Acids Res 43(W1):W576–W579

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hodis E, Prilusky J, Martz E et al (2008) Proteopedia—a scientific ‘wiki’ bridging the rift between three-dimensional structure and function of biomacromolecules. Genome Biol 9(8):R121. doi:10.1186/gb-2008-9-8-r121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Joosten RP, Long F, Murshudov GN et al (2014) The PDB_REDO server for macromolecular structure model optimization. IUCrJ 1(Pt 4):213–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Blow DM (2002) Rearrangement of Cruickshank's formulae for the diffraction-component precision index. Acta Crystallogr D Biol Crystallogr 58(Pt 5):792–797

    Article  CAS  PubMed  Google Scholar 

  123. Cruickshank DW (1999) Remarks about protein structure precision. Acta Crystallogr D Biol Crystallogr 55(Pt 3):583–601

    Article  CAS  PubMed  Google Scholar 

  124. Kumar KSD, Gurusaran M, Satheesh SN et al (2015) Online_DPI: a web server to calculate the diffraction precision index for a protein structure. J Appl Crystallogr 48:939–942

    Article  CAS  Google Scholar 

  125. Mongan J (2004) Interactive essential dynamics. J Comput Aid Mol Des 18 (6):433–436. doi:10.1007/s10822-004-4121-z

    Google Scholar 

  126. Sorzano CO, de la Rosa-Trevin JM, Tama F et al (2014) Hybrid Electron Microscopy Normal Mode Analysis graphical interface and protocol. J Struct Biol 188(2):134–141. doi:10.1016/j.jsb.2014.09.005

    Article  PubMed  Google Scholar 

  127. Brunger AT (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355(6359):472–475

    Article  CAS  PubMed  Google Scholar 

  128. Than ME, Hof P, Huber R et al (1997) Thermus thermophilus cytochrome-c552: a new highly thermostable cytochrome-c structure obtained by MAD phasing. J Mol Biol 271(4):629–644

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is dedicated to my PhD supervisor Robert Huber at the occasion of his 80s anniversary. Jürgen Plitzko, Tom Goddard, and Tristan Croll are gratefully acknowledged for generation of several figures. Jürgen Plitzko wrote parts of the text concerning the EM structure determination. My coworker Ajda Taler Verčič helped me with formatting the text and sorting out references. Funding was provided by the Structural Biology grant P1-0048 and by the Infrastructural Funds to Centre of Excellence CIPKeBiP, both provided by Slovenian Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan Turk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Turk, D. (2017). Boxes of Model Building and Visualization. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics