Advertisement

Radiation Damage in Macromolecular Crystallography

  • Elspeth F. GarmanEmail author
  • Martin WeikEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1607)

Abstract

Radiation damage inflicted on macromolecular crystals during X-ray diffraction experiments remains a limiting factor for structure solution, even when samples are cooled to cryotemperatures (~100 K). Efforts to establish mitigation strategies are ongoing and various approaches, summarized below, have been investigated over the last 15 years, resulting in a deeper understanding of the physical and chemical factors affecting damage rates. The recent advent of X-ray free electron lasers permits “diffraction-before-destruction” by providing highly brilliant and short (a few tens of fs) X-ray pulses. New fourth generation synchrotron sources now coming on line with higher X-ray flux densities than those available from third generation synchrotrons will bring the issue of radiation damage once more to the fore for structural biologists.

Key words

X-ray-matter interactions Global and specific radiation damage Radicals and their scavengers Absorbed dose Radiation damage mitigation Cryocrystallography 

Notes

Acknowledgments

We thank Ian Carmichael and Kathryn Shelley for their comments on this contribution, Charles Bury and Eugenio de la Mora for making the figures, and Markus Gerstel for carrying out a survey of the PDB regarding the temperature of data collection. We also acknowledge those many colleagues with whom we have discussed the issues related to radiation damage in MX. We especially thank the ESRF for access to beamtime since 2000 under the Radiation Damage BAG, which has allowed us to carry out systematic studies on many aspects of the topic.

References

  1. 1.
    Blundell TL, Johnson LN (1976) Protein crystallography. Academic Press, LondonGoogle Scholar
  2. 2.
    Hope H (1988) Cryocrystallography of biological macromolecules: a generally applicable method. Acta Crystallogr B 44:22–26PubMedCrossRefGoogle Scholar
  3. 3.
    Teng T (1990) Mounting of crystals for macromolecular crystallography in a free-standing thin film. J Appl Cryst 23:387–391CrossRefGoogle Scholar
  4. 4.
    Rodgers DW (1994) Cryocrystallography. Structure 2:1135–1140PubMedCrossRefGoogle Scholar
  5. 5.
    Rodgers DW (1997) Practical cryocrystallography. Methods Enzymol 276:183–203PubMedCrossRefGoogle Scholar
  6. 6.
    Garman EF, Schneider TR (1997) Macromolecular cryocrystallography. J Appl Cryst 30:211–237CrossRefGoogle Scholar
  7. 7.
    Garman E (1999) Cool data: quantity AND quality. Acta Crystallogr D Biol Crystallogr 55:1641–1653PubMedCrossRefGoogle Scholar
  8. 8.
    Nave C, Garman EF (2005) Towards an understanding of radiation damage in cryocooled macromolecular crystals. J Synchrotron Radiat 12:257–260PubMedCrossRefGoogle Scholar
  9. 9.
    Gonzalez A, Nave C (1994) Radiation damage in protein crystals at low temperature. Acta Crystallogr D Biol Crystallogr 50:874–877PubMedCrossRefGoogle Scholar
  10. 10.
    Nave C (1995) Applications of synchrotron X-radiation. Radiation damage in protein crystallography. Radiat Phys Chem 45:483–490CrossRefGoogle Scholar
  11. 11.
    Sanishvili R, Yoder DW, Pothineni SB et al (2011) Radiation damage in protein crystals is reduced with a micron-sized X-ray beam. Proc Natl Acad Sci U S A 108:6127–6132PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    O’Neill P, Stevens DL, Garman EF (2002) Physical and chemical considerations of damage induced in protein crystals by synchrotron radiation: a radiation chemical perspective. J Synchrotron Radiat 9:329–332PubMedCrossRefGoogle Scholar
  13. 13.
    Cosier J, Glazer AM (1986) A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J Appl Cryst 19:105–107CrossRefGoogle Scholar
  14. 14.
    Owen RL, Axford D, Nettleship JE et al (2012) Outrunning free radicals in room-temperature macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 68:810–818PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Jones GD, Lea JS, Symons MC et al (1987) Structure and mobility of electron gain and loss centres in proteins. Nature 330:772–773PubMedCrossRefGoogle Scholar
  16. 16.
    Owen RL, Holton JM, Schulze-Briese C et al (2009) Determination of X-ray flux using silicon pin diodes. J Synchrotron Radiat 16:143–151PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Zeldin OB, Gerstel M, Garman EF (2013) RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography. J Appl Cryst 46:1225–1230CrossRefGoogle Scholar
  18. 18.
    Zeldin OB, Gerstel M, Garman EF (2013) Optimizing the spatial distribution of dose in X-ray macromolecular crystallography. J Synchrotron Radiat 20:49–57PubMedCrossRefGoogle Scholar
  19. 19.
    Flot D, Mairs T, Giraud T et al (2010) The ID23-2 structural biology microfocus beamline at the ESRF. J Synchrotron Radiat 17:107–118PubMedCrossRefGoogle Scholar
  20. 20.
    Cowan JA, Nave C (2008) The optimum conditions to collect X-ray data from very small samples. J Synchrotron Radiat 15:458–462PubMedCrossRefGoogle Scholar
  21. 21.
    Murray JW, Garman EF, Ravelli RBG (2004) X-ray absorption by macromolecular crystals: the effects of wavelength and crystal composition on absorbed dose. J Appl Cryst 37:513–522CrossRefGoogle Scholar
  22. 22.
    Paithankar KS, Owen RL, Garman EF (2009) Absorbed dose calculations for macromolecular crystals: improvements to RADDOSE. J Synchrotron Radiat 16:152–162PubMedCrossRefGoogle Scholar
  23. 23.
    Paithankar KS, Garman EF (2010) Know your dose: RADDOSE. Acta Crystallogr D Biol Crystallogr 66:381–388PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Krojer T, von Delft F (2011) Assessment of radiation damage behaviour in a large collection of empirically optimized datasets highlights the importance of unmeasured complicating effects. J Synchrotron Radiat 18:387–397PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Zeldin OB, Brockhauser S, Bremridge J et al (2013) Predicting the X-ray lifetime of protein crystals. Proc Natl Acad Sci U S A 110:20551–20556PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Henderson R (1990) Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction. Proc R Soc London Ser B 241:6–8CrossRefGoogle Scholar
  27. 27.
    Murray JW, Rudino-Pinera E, Owen RL et al (2005) Parameters affecting the X-ray dose absorbed by macromolecular crystals. J Synchrotron Radiat 12:268–275PubMedCrossRefGoogle Scholar
  28. 28.
    Owen RL, Rudino-Pinera E, Garman EF (2006) Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc Natl Acad Sci U S A 103:4912–4917PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Howells MR, Beetz T, Chapman HN et al (2009) An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. J Electron Spectrosc 170:4–12CrossRefGoogle Scholar
  30. 30.
    Roedig P, Duman R, Sanchez-Weathertby J et al (2016) Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering. J Appl Cryst 49:968–975CrossRefGoogle Scholar
  31. 31.
    Ravelli RB, McSweeney SM (2000) The ‘fingerprint’ that X-rays can leave on structures. Structure 8:315–328PubMedCrossRefGoogle Scholar
  32. 32.
    Burmeister WP (2000) Structural changes in a cryo-cooled protein crystal owing to radiation damage. Acta Crystallogr D Biol Crystallogr 56:328–341PubMedCrossRefGoogle Scholar
  33. 33.
    Teng T, Moffat K (2000) Primary radiation damage of protein crystals by intense synchrotron radiation. J Synchrotron Radiat 7:313–317PubMedCrossRefGoogle Scholar
  34. 34.
    Murray J, Garman E (2002) Investigation of possible free-radical scavengers and metrics for radiation damage in protein cryocrystallography. J Synchrotron Radiat 9:347–354PubMedCrossRefGoogle Scholar
  35. 35.
    Ravelli RB, Theveneau P, McSweeney S et al (2002) Unit-cell volume change as a metric of radiation damage in crystals of macromolecules. J Synchrotron Radiat 9:355–360PubMedCrossRefGoogle Scholar
  36. 36.
    Meents A, Gutmann S, Wagner A et al (2010) Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures. Proc Natl Acad Sci U S A 107:1094–1099PubMedCrossRefGoogle Scholar
  37. 37.
    Kmetko J, Husseini NS, Naides M et al (2006) Quantifying X-ray radiation damage in protein crystals at cryogenic temperatures. Acta Crystallogr D Biol Crystallogr 62:1030–1038PubMedCrossRefGoogle Scholar
  38. 38.
    Diederichs K, McSweeney S, Ravelli RB (2003) Zero-dose extrapolation as part of macromolecular synchrotron data reduction. Acta Crystallogr D Biol Crystallogr 59:903–909PubMedCrossRefGoogle Scholar
  39. 39.
    De la Mora E, Carmichael I, Garman EF (2011) Effective scavenging at cryotemperatures: further increasing the dose tolerance of protein crystals. J Synchrotron Radiat 18:346–357PubMedCrossRefGoogle Scholar
  40. 40.
    Helliwell JR (1988) Protein crystal perfection and the nature of radiation damage. J Cryst Growth 90:259–272CrossRefGoogle Scholar
  41. 41.
    Weik M, Ravelli RB, Kryger G et al (2000) Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc Natl Acad Sci U S A 97:623–628PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Weik M, Berges J, Raves ML et al (2002) Evidence for the formation of disulfide radicals in protein crystals upon X-ray irradiation. J Synchrotron Radiat 9:342–346PubMedCrossRefGoogle Scholar
  43. 43.
    Sutton KA, Black PJ, Mercer KR et al (2013) Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies. Acta Crystallogr D Biol Crystallogr 69:2381–2394PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Matsui Y, Sakai K, Murakami M et al (2002) Specific damage induced by X-ray radiatioin and structural changes in the primary photoreaction of bacteriorhodopsin. J Mol Biol 324:469–481PubMedCrossRefGoogle Scholar
  45. 45.
    Kort R, Hellingwerf KJ, Ravelli RB (2004) Initial events in the photocycle of photoactive yellow protein. J Biol Chem 279:26417–26424PubMedCrossRefGoogle Scholar
  46. 46.
    Mees A, Klar T, Gnau P et al (2004) Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science 306:1789–1793PubMedCrossRefGoogle Scholar
  47. 47.
    Fioravanti E, Vellieux FM, Amara P et al (2007) Specific radiation damage to acidic residues and its relation to their chemical and structural environment. J Synchrotron Radiat 14:84–91PubMedCrossRefGoogle Scholar
  48. 48.
    Sjoblom B, Polentarutti M, Djinovic-Carugo K (2009) Structural study of X-ray induced activation of carbonic anhydrase. Proc Natl Acad Sci U S A 106:10609–10613PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Adam V, Carpentier P, Violot S et al (2009) Structural basis of X-ray-induced transient photobleaching in a photoactivatable green fluorescent protein. J Am Chem Soc 131:18063–18065PubMedCrossRefGoogle Scholar
  50. 50.
    Dubnovitsky AP, Ravelli RB, Popov AN et al (2005) Strain relief at the active site of phosphoserine aminotransferase induced by radiation damage. Protein Sci 14:1498–1507PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Bury C, Garman EF, Ginn HM et al (2015) Radiation damage to nucleoprotein complexes in macromolecular crystallography. J Synchrotron Radiat 22:213–224PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bury CS, McGeehan JE, Antson AA et al (2016) RNA protects a nucleoprotein complex against radiation damage. Acta Crystallogr D Biol Crystallogr 72:648–657CrossRefGoogle Scholar
  53. 53.
    Ravelli RB, Leiros HK, Pan B et al (2003) Specific radiation damage can be used to solve macromolecular crystal structures. Structure 11:217–224PubMedCrossRefGoogle Scholar
  54. 54.
    Banumathi S, Zwart PH, Ramagopal UA et al (2004) Structural effects of radiation damage and its potential for phasing. Acta Crystallogr D Biol Crystallogr 60:1085–1093PubMedCrossRefGoogle Scholar
  55. 55.
    Ravelli RB, Nanao MH, Lovering A et al (2005) Phasing in the presence of radiation damage. J Synchrotron Radiat 12:276–284PubMedCrossRefGoogle Scholar
  56. 56.
    Nanao MH, Ravelli RB (2006) Phasing macromolecular structures with UV-induced structural changes. Structure 14:791–800PubMedCrossRefGoogle Scholar
  57. 57.
    McGeehan J, Ravelli RGB, Murray JW et al (2009) Colouring cryo-cooled crystals: online microspectrophotometry. J Synchrotron Radiat 16:163–172PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Carpentier P, Royant A, Ohana J et al (2007) Advances in spectroscopic methods for biological crystals. 2. Raman spectroscopy. J Appl Cryst 40:1113–1122CrossRefGoogle Scholar
  59. 59.
    Yano J, Kern J, Irrgang K-D et al (2005) X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc Natl Acad Sci U S A 102:12047–12052PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Holton JM (2007) XANES measurements of the rate of radiation damage to selenomethionine side chains. J Synchrotron Radiat 14:51–72PubMedCrossRefGoogle Scholar
  61. 61.
    Utschig LM, Chemerisov SD, Tiede DM et al (2008) Electron paramagnetic resonance study of radiation damage in photosynthetic reaction center crystals. Biochemistry 47:9251–9257PubMedCrossRefGoogle Scholar
  62. 62.
    Beitlich T, Kuhnel K, Schulze-Briese C et al (2007) Cryoradiolytic reduction of crystalline heme proteins: analysis by UV-Vis spectroscopy and X-ray crystallography. J Synchrotron Radiat 14:11–23PubMedCrossRefGoogle Scholar
  63. 63.
    Hersleth HP, Andersson KK (2011) How different oxidation states of crystalline myoglobin are influenced by X-rays. Biochim Biophys Acta 1814:785–796PubMedCrossRefGoogle Scholar
  64. 64.
    Borshchevskiy V, Round E, Erofeev I et al (2014) Low-dose X-ray radiation induces structural alterations in proteins. Acta Crystallogr D Biol Crystallogr 70:2675–2685PubMedCrossRefGoogle Scholar
  65. 65.
    Baxter RH, Seagle BL, Ponomarenko N et al (2004) Specific radiation damage illustrates light-induced structural changes in the photosynthetic reaction center. J Am Chem Soc 126:16728–16729PubMedCrossRefGoogle Scholar
  66. 66.
    Sato M, Shibata N, Morimoto Y et al (2004) X-ray induced reduction of the crystal of high-molecular-weight cytochrome c revealed by microspectrophotometry. J Synchrotron Radiat 11:113–116PubMedCrossRefGoogle Scholar
  67. 67.
    Echalier A, Goodhew CF, Pettigrew GW et al (2006) Activation and catalysis of the di-heme cytochrome c peroxidase from Paracoccus pantotrophus. Structure 14:107–117PubMedCrossRefGoogle Scholar
  68. 68.
    Pearson AR, Pahl R, Kovaleva EG et al (2007) Tracking X-ray-derived redox changes in crystals of a methylamine dehydrogenase/amicyanin complex using single-crystal UV/Vis microspectrophotometry. J Synchrotron Radiat 14:92–98PubMedCrossRefGoogle Scholar
  69. 69.
    Li F, Burgie ES, Yu T et al (2015) X-ray radiation induces deprotonation of the bilin chromophore in crystalline D Radiodurans phytochrome. J Am Chem Soc 137:2792–2795PubMedCrossRefGoogle Scholar
  70. 70.
    Berglund GI, Carlsson GH, Smith AT et al (2002) The catalytic pathway of horseradish peroxidase at high resolution. Nature 417:463–468PubMedCrossRefGoogle Scholar
  71. 71.
    Aoyama H, Muramoto K, Shinzawa-Itoh K et al (2009) A peroxide bridge between Fe and Cu ions in the O2 reduction site of fully oxidized cytochrome c oxidase could suppress the proton pump. Proc Natl Acad Sci U S A 106:2165–2169PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Corbett MC, Latimer MJ, Poulos TL et al (2007) Photoreduction of the active site of the metalloprotein putidaredoxin by synchrotron radiation. Acta Crystallogr D Biol Crystallogr 63:951–960PubMedCrossRefGoogle Scholar
  73. 73.
    Macedo S, Pechlaner M, Schmid W et al (2009) Can soaked-in scavengers protect metalloprotein active sites from reduction during data collection? J Synchrotron Radiat 16:191–204PubMedCrossRefGoogle Scholar
  74. 74.
    Schlichting I, Berendzen J, Chu K et al (2000) The catalytic pathway of cytochrome p450cam at atomic resolution. Science 287:1615–1622PubMedCrossRefGoogle Scholar
  75. 75.
    Horrell S, Antonyuk SV, Eady RR et al (2016) Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal. IUCr J 3:271–281CrossRefGoogle Scholar
  76. 76.
    Bui S, von Stetten D, Jambrina PG et al (2014) Direct evidence for a peroxide intermediate and a reactive enzyme-substrate-dioxygen configuration in a cofactor-free oxidase. Angew Chem Int Ed 53:13710–13714CrossRefGoogle Scholar
  77. 77.
    Garman EF, Doublie S (2003) Cryocooling of macromolecular crystals: optimization methods. Methods Enzymol 368:188–216PubMedCrossRefGoogle Scholar
  78. 78.
    Southworth-Davies RJ, Medina MA, Carmichael I et al (2007) Observation of decreased radiation damage at higher dose rates in room temperature protein crystallography. Structure 15:1531–1541PubMedCrossRefGoogle Scholar
  79. 79.
    Warkentin M, Hopkins JB, Badeau R et al (2013) Global radiation damage: temperature dependence, time dependence and how to outrun it. J Synchrotron Radiat 20:7–13PubMedCrossRefGoogle Scholar
  80. 80.
    Warkentin M, Thorne RE (2010) Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements. Acta Crystallogr D Biol Crystallogr 66:1092–1100PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Halle B (2004) Biomolecular cryocrystallography: structural changes during flash-cooling. Proc Natl Acad Sci U S A 101:4793–4798PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Vitkup D, Ringe D, Petsko GA et al (2000) Solvent mobility and the protein ‘glass’ transition. Nat Struct Biol 7:34–38PubMedCrossRefGoogle Scholar
  83. 83.
    Weik M, Kryger G, Schreurs AM et al (2001) Solvent behaviour in flash-cooled protein crystals at cryogenic temperatures. Acta Crystallogr D Biol Crystallogr 57:566–573PubMedCrossRefGoogle Scholar
  84. 84.
    Schiro G, Fichou Y, Gaillat F-X et al (2015) Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins. Nat Commun 6:6490PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Chinte U, Shah B, Chen Y-S et al (2007) Cryogenic (<20 K) helium cooling mitigates radiation damage to protein crystals. Acta Crystallogr D Biol Crystallogr 63:486–492PubMedCrossRefGoogle Scholar
  86. 86.
    Meents A, Wagner A, Schneider R et al (2007) Reduction of X-ray-induced radiation damage of macromolecular crystals by data collection at 15 K: a systematic study. Acta Crystallogr D Biol Crystallogr 63:302–309PubMedCrossRefGoogle Scholar
  87. 87.
    Colletier JP, Bourgeois D, Sanson B et al (2008) Shoot-and-Trap: use of specific x-ray damage to study structural protein dynamics by temperature-controlled cryo-crystallography. Proc Natl Acad Sci U S A 105:11742–11747PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Weik M, Colletier J-P (2010) Temperature-dependent macromolecular X-ray crystallography. Acta Crystallogr D Biol Crystallogr 66:437–446PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Frauenfelder H, Petsko GA, Tsernoglou D (1979) Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280:558–563PubMedCrossRefGoogle Scholar
  90. 90.
    Keedy DA, Kenner LR, Warkentin M et al (2015) Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography. Elife 4:e07574PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Blake C, Phillips DC (1962) Effects of X-irradiation on single crystals of myoglobin. In: Proceedings of the Symposium on the Biological Effects of Ionising Radiation at the Molecular Level, Vienna, pp 183–191Google Scholar
  92. 92.
    Jacquamet L, Ohana J, Joly J et al (2004) Automated analysis of vapor diffusion crystallization drops with an X-ray beam. Structure 12:1219–1225PubMedCrossRefGoogle Scholar
  93. 93.
    Kalinin Y, Kmetko J, Bartnik A et al (2005) A new sample mounting technique for room-temperature macromolecular crystallography. J Appl Cryst 38:333–339CrossRefGoogle Scholar
  94. 94.
    Sanchez-Weatherby J, Bowler MW, Huet J et al (2009) Improving diffraction by humidity control: a novel device compatible with X-ray beamlines. Acta Crystallogr D Biol Crystallogr 65:1237–1246PubMedCrossRefGoogle Scholar
  95. 95.
    Fraser JS, van den Bedem H, Samelson AJ et al (2011) Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci U S A 108:16247–16252PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Warkentin M, Badeau R, Hopkins JB et al (2012) Global radiation damage at 300 and 260 K with dose rates approaching 1 MGy s-1. Acta Crystallogr D Biol Crystallogr 68:124–133PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Owen RL, Paterson N, Axford D et al (2014) Exploiting fast detectors to enter a new dimension in room-temperature crystallography. Acta Crystallogr D Biol Crystallogr 70:1248–1256PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Coquelle N, Brewster AS, Kapp U et al (2015) Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams. Acta Crystallogr D Biol Crystallogr 71:1184–1196PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Arndt UW (1984) Optimum X-ray wavelength for protein crystallography. J Appl Cryst 17:118–119CrossRefGoogle Scholar
  100. 100.
    Weiss MS, Panjikar S, Mueller-Dieckmann C et al (2005) On the influence of the incident photon energy on the radiation damage in crystalline biological samples. J Synchrotron Radiat 12:304–309PubMedCrossRefGoogle Scholar
  101. 101.
    Shimizu N, Hirata K, Hasegawa K et al (2007) Dose dependence of radiation damage for protein crystals studied at various X-ray energies. J Synchrotron Radiat 14:4–10PubMedCrossRefGoogle Scholar
  102. 102.
    Homer C, Cooper L, Gonzalez A (2011) Energy dependence of site-specific radiation damage in protein crystals. J Synchrotron Radiat 18:338–345PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Fourme R, Honkimäki V, Girard E et al (2012) Reduction of radiation damage and other benefits of short wavelengths for macromolecular crystallography data collection. J Appl Cryst 45:652–661CrossRefGoogle Scholar
  104. 104.
    Liebschner D, Rosenbaum G, Dauter M et al (2015) Radiation decay of thaumatin crystals at three X-ray energies. Acta Crystallogr D Biol Crystallogr 71:772–778PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Sliz P, Harrison SC, Rosenbaum G (2003) How does radiation damage in protein crystals depend on X-ray dose? Structure 11:13–19PubMedCrossRefGoogle Scholar
  106. 106.
    Leiros HK, Timmins J, Ravelli RB et al (2006) Is radiation damage dependent on the dose rate used during macromolecular crystallography data collection? Acta Crystallogr D Biol Crystallogr 62:125–132PubMedCrossRefGoogle Scholar
  107. 107.
    Mhaisekar A, Kazmierczak MJ, Banerjee R (2005) Three-dimensional numerical analysis of convection and conduction cooling of spherical biocrystals with localized heating from synchrotron X-ray beams. J Synchrotron Radiat 12:318–328PubMedCrossRefGoogle Scholar
  108. 108.
    Allan EG, Kander MC, Carmichael I et al (2013) To scavenge or not to scavenge, that is STILL the question. J Synchrotron Radiat 20:23–36PubMedCrossRefGoogle Scholar
  109. 109.
    Holton JM (2009) A beginner’s guide to radiation damage. J Synchrotron Radiat 16:133–142PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Kmetko J, Warkentin M, Englich U et al (2011) Can radiation damage to protein crystals be reduced using small-molecule compounds? Acta Crystallogr D Biol Crystallogr 67:881–893PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Barker AI, Southworth-Davies RJ, Paithankar KS et al (2009) Room-temperature scavengers for macromolecular crystallography: increased lifetimes and modified dose dependence of the intensity decay. J Synchrotron Radiat 16:205–216PubMedCrossRefGoogle Scholar
  112. 112.
    Neutze R, Wouts R, van der Spoel D et al (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–757PubMedCrossRefGoogle Scholar
  113. 113.
    Chapman HN, Fromme P, Barty A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Boutet S, Lomb L, Williams GJ et al (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Hirata K, Shinzawa-Itoh K, Yano N et al (2014) Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nat Methods 11:734–736PubMedCrossRefGoogle Scholar
  116. 116.
    Chreifi G, Baxter EL, Doukov T et al (2016) Crystal structure of the pristine peroxidase ferryl center and its relevance to proton-coupled electron transfer. Proc Natl Acad Sci U S A 113:1226–1231PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Lomb L, Barends TRM, Kassemeyer S et al (2011) Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser. Phys Rev B Condens Matter Mater Phys B84:214111CrossRefGoogle Scholar
  118. 118.
    Barty A, Caleman C, Aquila A et al (2012) Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat Photonics 6:35–40PubMedCrossRefGoogle Scholar
  119. 119.
    Nass K, Foucar L, Barends TR et al (2015) Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. J Synchrotron Radiat 22:225–238PubMedCrossRefGoogle Scholar
  120. 120.
    Galli L, Son S-K, Klinge M et al (2015) Electronic damage in S atoms in a native protein crystal induced by an intense X-ray free-electron laser pulse. Struct Dyn 2:041703PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of OxfordOxfordUK
  2. 2.Institut de Biologie StructuraleUniversity of Grenoble Alpes, CEA, CNRSGrenobleFrance

Personalised recommendations