Protein Crystallography pp 349-356 | Cite as
Many Ways to Derivatize Macromolecules and Their Crystals for Phasing
- 5 Citations
- 3.1k Downloads
Abstract
Due to the availability of many macromolecular models in the Protein Data Bank, the majority of crystal structures are currently solved by molecular replacement. However, truly novel structures can only be solved by one of the versions of the special-atom method. The special atoms such as sulfur, phosphorus or metals could be naturally present in the macromolecules, or could be intentionally introduced in a derivatization process. The isomorphous and/or anomalous scattering of X-rays by these special atoms is then utilized for phasing. There are many ways to obtain potentially useful derivatives, ranging from the introduction of special atoms to proteins or nucleic acids by genetic engineering or by chemical synthesis, to soaking native crystals in solutions of appropriate compounds with heavy and/or anomalously scattering atoms. No approach guarantees the ultimate success and derivatization remains largely a trial-and-error process. In practice, however, there is a very good chance that one of a wide variety of the available procedures will lead to successful structure solution.
Key words
Derivatization of crystals Heavy atoms Anomalous signal MIR phasing MAD phasing SAD phasingReferences
- 1.Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242CrossRefPubMedPubMedCentralGoogle Scholar
- 2.Green DW, Ingram VM, Perutz MF (1954) The structure of haemoglobin. IV. Sign determination by the isomorphous replacement method. Proc R Soc Lond 225:287–307CrossRefGoogle Scholar
- 3.Perutz MF, Rossmann MG, Cullis AF et al (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-Å resolution, obtained by X-ray analysis. Nature 185:416–421CrossRefPubMedGoogle Scholar
- 4.Kendrew JC, Bodo G, Dintzis HM et al (1958) A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181:662–666CrossRefPubMedGoogle Scholar
- 5.Blake CCF, Fenn RH, Johnson LN et al (2001) A historical perspective: how the structure of lysozyme was actually determined. In: International tables for crystallography, vol F. Kluwer Academic Publishers, Dordrecht, pp 745–772CrossRefGoogle Scholar
- 6.Hendrickson WA (1991) Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254:51–58Google Scholar
- 7.Hendrickson WA, Teeter MM (1981) Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulfur. Nature 290:107–113Google Scholar
- 8.Hendrickson WA, Horton JR, LeMaster DM (1990) Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three dimensional structure. EMBO J 9:1665–1672PubMedPubMedCentralGoogle Scholar
- 9.Gluehmann M, Zarivach R, Bashan A et al (2001) Ribosomal crystallography: from poorly diffracting microcrystals to high-resolution structures. Methods 25:292CrossRefPubMedGoogle Scholar
- 10.Dauter Z (2005) Use of polynuclear metal clusters in protein crystallography. Compt Rend Chimie 8:1808–1181Google Scholar
- 11.Dauter Z, Dauter M, Rajashankar KR (2000) Novel approach to phasing proteins: derivatization by short cryo-soaking with halides. Acta Crystallogr D Biol Crystallogr 56:232–237Google Scholar
- 12.Wang BC (1985) Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol 115:90–112CrossRefPubMedGoogle Scholar
- 13.Ramagopal UA, Dauter M, Dauter Z (2003) Phasing on anomalous signal of sulfurs: what is the limit? Acta Crystallogr D59:1020–1027Google Scholar
- 14.Dauter Z, Adamiak DA (2001) Anomalous signal of phosphorus used for phasing DNA oligomer: importance of data redundancy. Acta Crystallogr D57:990–995Google Scholar
- 15.Garman EF (2010) Radiation damage in macromolecular crystallography: what is it and why should we care? Acta Crystallogr D Biol Crystallogr 66:339–351CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Ravelli RBG, Leiros HK, Pan B et al (2003) Specific radiation damage can be used to solve macromolecular crystal structures. Structure 11:217–224CrossRefPubMedGoogle Scholar
- 17.Liu Q, Liu Q, Hendrickson WA (2013) Robust structural analysis of native biological macromolecules from multi-crystal anomalous diffraction data. Acta Crystallogr D Biol Crystallogr 69:1314–1332CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Xie J, Wang L, Brock A et al (2004) The site-specific incorporation of p-iodo-L-phenylalanine into proteins for structure determination. Nature Biotechnol 22:1297–1301CrossRefGoogle Scholar
- 19.Brzozowski AM, Derewenda U, Derewenda ZS et al (1991) A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351:491–494CrossRefPubMedGoogle Scholar
- 20.Hendrickson WA, Ogata CM (1997) Phase determination from multiwavelength anomalous diffraction measurements. Methods Enzymol 276:494–513CrossRefPubMedGoogle Scholar
- 21.Wilds CJ, Pattanayek R, Pan C et al (2002) Selenium-assisted nucleic acid crystallography: use of phosphoroselenates for MAD phasing of a DNA structure. J Am Chem Soc 124:14910–14916CrossRefPubMedGoogle Scholar
- 22.Ramagopal UA, Dauter Z, Thirumuruhan R et al (2005) Radiation-induced site-specific damage of mercury derivatives: phasing and implications. Acta Crystallogr D Biol Crystallogr 61:1289–1298CrossRefPubMedGoogle Scholar
- 23.Ennifar E, Carpentier P, Ferrer JL et al (2002) X-ray induced debromination of nucleic acids at the Br K absorption edge and implications for MAD phasing. Acta Crystallogr D Biol Crystallogr 58:1262–1268CrossRefPubMedGoogle Scholar
- 24.Agniswamy J, Joyce MG, Hammer CH et al (2008) Towards a rational approach for heavy-atom derivative screening in protein crystallography. Acta Crystallogr D Biol Crystallogr 64:354–367CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Boggon TJ, Shapiro L (2000) Screening for phasing atoms in protein crystallography. Structure 8:R143–R149CrossRefPubMedGoogle Scholar
- 26.Carvin D, Islam SA, Sternberg MJE et al (1998) A databank of heavy-atom binding sites in protein crystals: a resource in use for multiple isomorphous replacement and anomalous scattering. Acta Crystallogr D Biol Crystallogr 54:1199–1206CrossRefPubMedGoogle Scholar
- 27.Sun PD, Radaev S, Kattah M (2002) Generating isomprphous heavy-atom derivatives by a quick-soak method. Part I. Test cases. Acta Crystallogr D Biol Crystallogr 58:1092–1098CrossRefPubMedGoogle Scholar
- 28.Kretsinger RH (1968) A crystallographic study of iodinated sperm whale metmyoglobin. J Mol Biol 31:315–318CrossRefPubMedGoogle Scholar
- 29.Ban N, Freeborn B, Nissen P et al (1998) A 9 Å resolution X-ray crystallographic map of the large ribosomal subunit. Cell 93:1105–1115CrossRefPubMedGoogle Scholar
- 30.Clemons WM, May JLC, Wimberly BT et al (1999) Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution. Nature 400:833–840CrossRefPubMedGoogle Scholar
- 31.Joyce MG, Radaev S, Sun PD (2010) A rational approach to heavy-atom derivative screening. Acta Crystallogr D Biol Crystallogr 66:358–366CrossRefPubMedPubMedCentralGoogle Scholar
- 32.Pasternak O, Bujacz A, Biesiadka J et al (2008) MAD phasing using the (Ta6Br12)2+ cluster: a retrospective study. Acta Crystallogr D Biol Crystallogr 64:595–606CrossRefPubMedGoogle Scholar
- 33.Evans G, Bricogne G (2003) Triiodide derivatization in protein crystallography. Acta Crystallogr D Biol Crystallogr 59:1923–1929CrossRefPubMedGoogle Scholar
- 34.Prangé T, Schiltz M, Pernot L et al (1998) Exploring hydrophobic sites in proteins with xenon or krypton. Proteins 30:61–73CrossRefPubMedGoogle Scholar