Protein Crystallography pp 239-272 | Cite as
Serial Synchrotron X-Ray Crystallography (SSX)
- 16 Citations
- 2 Mentions
- 3.3k Downloads
Abstract
Prompted by methodological advances in measurements with X-ray free electron lasers, it was realized in the last two years that traditional (or conventional) methods for data collection from crystals of macromolecular specimens can be complemented by synchrotron measurements on microcrystals that would individually not suffice for a complete data set. Measuring, processing, and merging many partial data sets of this kind requires new techniques which have since been implemented at several third-generation synchrotron facilities, and are described here. Among these, we particularly focus on the possibility of in situ measurements combined with in meso crystal preparations and data analysis with the XDS package and auxiliary programs.
Key words
Serial synchrotron crystallography (SSX) Microcrystal Lipidic cubic phase (LCP) In meso in situ Room temperature (RT) Cryogenic temperature Data collection Data quality Merging XDS XSCALENotes
Acknowledgments
We thank Greta Assmann, Wolfgang Brehm, Martin Caffrey, Chia-Ying Huang, Vincent Olieric, Ezequiel Panepucci, Rangana Warshamanage, and all other members of the groups at the Swiss Light Source (Paul-Scherrer-Institute, Villigen, Switzerland), Trinity College (Dublin, Ireland) and University of Konstanz (Konstanz, Germany) for discussions and their contributions toward developing the methodology. We also thank Aaron Finke and Martin Caffrey for proofreading the manuscript and Rangana Warshamanage and Chia-Ying Huang for preparing the figures.
References
- 1.Arndt UW, Wonacott AJ (1977) The rotation method in crystallography. North-Holland Publishing Company, AmsterdamGoogle Scholar
- 2.Darwin CG (1914) XXXIV. The theory of X-ray reflexion. Philos Mag Ser 6 27:315–333CrossRefGoogle Scholar
- 3.Warren BE (1969) X-ray diffraction. Addison-Wesley Pub. Co., Reading, MAGoogle Scholar
- 4.Holton JM, Frankel KA (2010) The minimum crystal size needed for a complete diffraction data set. Acta Crystallogr D Biol Crystallogr 66:393–408PubMedPubMedCentralCrossRefGoogle Scholar
- 5.Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181:662–666PubMedCrossRefGoogle Scholar
- 6.Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G (1960) Structure of hæmoglobin: a three-dimensional fourier synthesis at 5.5-Å. resolution, obtained by X-ray analysis. Nature 185:416–422PubMedCrossRefGoogle Scholar
- 7.Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G (1978) Tomato bushy stunt virus at 2.9 A resolution. Nature 276:368–373PubMedCrossRefGoogle Scholar
- 8.Hendrickson WA (2000) Synchrotron crystallography. Trends Biochem Sci 25:637–643PubMedCrossRefGoogle Scholar
- 9.Hope H (1988) Cryocrystallography of biological macromolecules: a generally applicable method. Acta Crystallogr B 44:22–26PubMedCrossRefGoogle Scholar
- 10.Sliz P, Harrison SC, Rosenbaum G (2003) How does radiation damage in protein crystals depend on X-ray dose? Structure 11:13–19PubMedCrossRefGoogle Scholar
- 11.Cusack S, Belrhali H, Bram A, Burghammer M, Perrakis A, Riekel C (1998) Small is beautiful: protein micro-crystallography. Nat Struct Biol 5(Suppl):634–637PubMedCrossRefGoogle Scholar
- 12.Smith JL, Fischetti RF, Yamamoto M (2012) Micro-crystallography comes of age. Curr Opin Struct Biol 22:602–612PubMedPubMedCentralCrossRefGoogle Scholar
- 13.Chapman HN, Fromme P, Barty A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Schlichting I (2015) Serial femtosecond crystallography: the first five years. IUCrJ 2:246–255PubMedPubMedCentralCrossRefGoogle Scholar
- 15.Gavira JA (2015) Current trends in protein crystallization. Arch Biochem Biophys 602:3–11PubMedCrossRefGoogle Scholar
- 16.Liu W, Ishchenko A, Cherezov V (2014) Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nat Protoc 9:2123–2134PubMedPubMedCentralCrossRefGoogle Scholar
- 17.DePonte DP, Weierstall U, Schmidt K, Warner J, Starodub D, Spence JCH, Doak RB (2008) Gas dynamic virtual nozzle for generation of microscopic droplet streams. J Phys D Appl Phys 41:195505CrossRefGoogle Scholar
- 18.Weierstall U, James D, Wang C et al (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5:3309PubMedPubMedCentralCrossRefGoogle Scholar
- 19.Botha S, Nass K, Barends TRM et al (2015) Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. Acta Crystallogr D Biol Crystallogr 71:387–397PubMedCrossRefGoogle Scholar
- 20.Boutet S, Lomb L, Williams GJ et al (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364PubMedPubMedCentralCrossRefGoogle Scholar
- 21.Sierra RG, Laksmono H, Kern J et al (2012) Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallogr D Biol Crystallogr 68:1584–1587PubMedPubMedCentralCrossRefGoogle Scholar
- 22.Sugahara M, Mizohata E, Nango E et al (2015) Grease matrix as a versatile carrier of proteins for serial crystallography. Nat Methods 12:61–63PubMedCrossRefGoogle Scholar
- 23.Conrad CE, Basu S, James D et al (2015) A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ 2:421–430PubMedPubMedCentralCrossRefGoogle Scholar
- 24.Liu W, Wacker D, Gati C et al (2013) Serial femtosecond crystallography of G protein-coupled receptors. Science 342:1521–1524PubMedPubMedCentralCrossRefGoogle Scholar
- 25.Fenalti G, Zatsepin NA, Betti C et al (2015) Structural basis for bifunctional peptide recognition at human δ-opioid receptor. Nat Struct Mol Biol 22:265–268PubMedPubMedCentralCrossRefGoogle Scholar
- 26.Zhang H, Unal H, Gati C et al (2015) Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell 161:833–844PubMedPubMedCentralCrossRefGoogle Scholar
- 27.Kang Y, Zhou XE, Gao X et al (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567PubMedPubMedCentralCrossRefGoogle Scholar
- 28.Nogly P, James D, Wang D, White TA, Shilova A, Nelson G, Liu H, Johansson L (2015) Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ 2:168–176PubMedPubMedCentralCrossRefGoogle Scholar
- 29.Stellato F, Oberthür D, Liang M et al (2014) Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ 1:204–212PubMedPubMedCentralCrossRefGoogle Scholar
- 30.Roessler CG, Agarwal R, Allaire M et al (2016) Acoustic injectors for drop-on-demand serial femtosecond crystallography. Structure 24:631–640PubMedPubMedCentralCrossRefGoogle Scholar
- 31.Roessler CG, Kuczewski A, Stearns R, Ellson R, Olechno J, Orville AM, Allaire M, Soares AS, Héroux A (2013) Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines. J Synchrotron Radiat 20:805–808PubMedPubMedCentralCrossRefGoogle Scholar
- 32.Soares AS, Mullen JD, Parekh RM, McCarthy GS, Roessler CG, Jackimowicz R, Skinner JM, Orville AM, Allaire M, Sweet RM (2014) Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt. J Synchrotron Radiat 21:1231–1239PubMedPubMedCentralCrossRefGoogle Scholar
- 33.Tsujino S, Tomizaki T (2016) Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature. Sci Rep 6:25558PubMedPubMedCentralCrossRefGoogle Scholar
- 34.Hunter MS, Segelke B, Messerschmidt M et al (2014) Fixed-target protein serial microcrystallography with an X-ray free electron laser. Sci Rep 4:6026PubMedPubMedCentralCrossRefGoogle Scholar
- 35.Cohen AE, Soltis SM, González A et al (2014) Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proc Natl Acad Sci U S A 111:17122–17127PubMedPubMedCentralCrossRefGoogle Scholar
- 36.Hirata K, Shinzawa-Itoh K, Yano N et al (2014) Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nat Methods 11:734–736PubMedCrossRefGoogle Scholar
- 37.Wierman JL, Alden JS, Kim CU, McEuen PL, Gruner SM (2013) Graphene as a protein crystal mounting material to reduce background scatter. J Appl Crystallogr 46:1501–1507PubMedPubMedCentralCrossRefGoogle Scholar
- 38.Warren AJ, Crawshaw AD, Trincao J, Aller P, Alcock S, Nistea I, Salgado PS, Evans G (2015) In vacuo X-ray data collection from graphene-wrapped protein crystals. Acta Crystallogr D Biol Crystallogr 71:2079–2088PubMedPubMedCentralCrossRefGoogle Scholar
- 39.Sui S, Wang Y, Kolewe KW, Srajer V, Henning R, Schiffman JD, Dimitrakopoulos C, Perry SL (2016) Graphene-based microfluidics for serial crystallography. Lab Chip. Advance article. doi: 10.1039/C6LC00451B
- 40.Zarrine-Afsar A, Barends TRM, Müller C, Fuchs MR, Lomb L, Schlichting I, Miller RJD (2012) Crystallography on a chip. Acta Crystallogr D Biol Crystallogr 68:321–323PubMedCrossRefGoogle Scholar
- 41.Murray TD, Lyubimov AY, Ogata CM, Vo H, Uervirojnangkoorn M, Brunger AT, Berger JM (2015) A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions. Acta Crystallogr D Biol Crystallogr 71:1987–1997PubMedPubMedCentralCrossRefGoogle Scholar
- 42.Roedig P, Vartiainen I, Duman R et al (2015) A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Sci Rep 5:10451PubMedPubMedCentralCrossRefGoogle Scholar
- 43.Lyubimov AY, Murray TD, Koehl A et al (2015) Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array. Acta Crystallogr D Biol Crystallogr 71:928–940PubMedPubMedCentralCrossRefGoogle Scholar
- 44.Baxter EL, Aguila L, Alonso-Mori R et al (2016) High-density grids for efficient data collection from multiple crystals. Acta Crystallogr D Biol Crystallogr 72:2–11CrossRefGoogle Scholar
- 45.Coquelle N, Brewster AS, Kapp U, Shilova A, Weinhausen B, Burghammer M, Colletier JP (2015) Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams. Acta Crystallogr D Biol Crystallogr 71:1184–1196PubMedPubMedCentralCrossRefGoogle Scholar
- 46.Coulibaly F, Chiu E, Ikeda K, Gutmann S, Haebel PW, Schulze-Briese C, Mori H, Metcalf P (2007) The molecular organization of cypovirus polyhedra. Nature 446:97–101PubMedCrossRefGoogle Scholar
- 47.Cherezov V, Hanson MA, Griffith MT, Hilgart MC, Sanishvili R, Nagarajan V, Stepanov S, Fischetti RF, Kuhn P, Stevens RC (2009) Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 microm size X-ray synchrotron beam. J R Soc Interface 6(Suppl 5):S587–S597PubMedPubMedCentralCrossRefGoogle Scholar
- 48.Ji X, Sutton G, Evans G, Axford D, Owen R, Stuart DI (2010) How baculovirus polyhedra fit square pegs into round holes to robustly package viruses. EMBO J 29:505–514PubMedCrossRefGoogle Scholar
- 49.Axford D, Ji X, Stuart DI, Sutton G (2014) In cellulo structure determination of a novel cypovirus polyhedrin. Acta Crystallogr D Biol Crystallogr 70:1435–1441PubMedPubMedCentralCrossRefGoogle Scholar
- 50.Zander U, Bourenkov G, Popov AN, de Sanctis D, Svensson O, AA MC, Round E, Gordeliy V, Mueller-Dieckmann C, Leonard GA (2015) MeshAndCollect: an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines. Acta Crystallogr D Biol Crystallogr 71:2328–2343PubMedPubMedCentralCrossRefGoogle Scholar
- 51.Boudes M, Garriga D, Fryga A, Caradoc-Davies T, Coulibaly F (2016) A pipeline for structure determination of ıt in vivo-grown crystals using ıt in cellulo diffraction. Acta Crystallogr D Biol Crystallogr 72:576–585CrossRefGoogle Scholar
- 52.Gati C, Bourenkov G, Klinge M et al (2014) Serial crystallography on in vivo grown microcrystals using synchrotron radiation. IUCrJ 1:87–94PubMedPubMedCentralCrossRefGoogle Scholar
- 53.Li L, Ismagilov RF (2010) Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip. Annu Rev Biophys 39:139–158PubMedCrossRefGoogle Scholar
- 54.Kisselman G, Qiu W, Romanov V, Thompson CM, Lam R, Battaile KP, Pai EF, Chirgadze NY (2011) X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection. Acta Crystallogr D Biol Crystallogr 67:533–539PubMedPubMedCentralCrossRefGoogle Scholar
- 55.Dhouib K, Khan Malek C, Pfleging W et al (2009) Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. Lab Chip 9:1412–1421PubMedCrossRefGoogle Scholar
- 56.Pinker F, Brun M, Morin P et al (2013) ChipX: a novel microfluidic chip for counter-diffusion crystallization of biomolecules and in situ crystal analysis at room temperature. Cryst Growth Des 13:3333–3340CrossRefGoogle Scholar
- 57.Perry SL, Guha S, Pawate AS, Bhaskarla A, Agarwal V, Nair SK, Kenis PJA (2013) A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction. Lab Chip 13:3183–3187PubMedPubMedCentralCrossRefGoogle Scholar
- 58.Khvostichenko DS, Schieferstein JM, Pawate AS, Laible PD, Kenis PJA (2014) X-ray transparent microfluidic chip for mesophase-based crystallization of membrane proteins and on-chip structure determination. Cryst Growth Des 14:4886–4890PubMedPubMedCentralCrossRefGoogle Scholar
- 59.Heymann M, Opthalage A, Wierman JL, Akella S, Szebenyi DME, Gruner SM, Fraden S (2014) Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction. IUCrJ 1:349–360PubMedPubMedCentralCrossRefGoogle Scholar
- 60.Jacquamet L, Ohana J, Joly J et al (2004) Automated analysis of vapor diffusion crystallization drops with an X-ray beam. Structure 12:1219–1225PubMedCrossRefGoogle Scholar
- 61.Bingel-Erlenmeyer R, Olieric V, Grimshaw JPA et al (2011) SLS crystallization platform at beamline X06DA—a fully automated pipeline enabling in situ X-ray diffraction screening. Cryst Growth Des 11:916–923CrossRefGoogle Scholar
- 62.Axford D, Owen RL, Aishima J et al (2012) In situ macromolecular crystallography using microbeams. Acta Crystallogr D Biol Crystallogr 68:592–600PubMedPubMedCentralCrossRefGoogle Scholar
- 63.Axford D, Foadi J, Hu N-J, Choudhury HG, Iwata S, Beis K, Evans G, Alguel Y (2015) Structure determination of an integral membrane protein at room temperature from crystals in situ. Acta Crystallogr D Biol Crystallogr 71:1228–1237PubMedPubMedCentralCrossRefGoogle Scholar
- 64.Gelin M, Delfosse V, Allemand F, Hoh F, Sallaz-Damaz Y, Pirocchi M, Bourguet W, Ferrer JL, Labesse G, Guichou JF (2015) Combining “dry” co-crystallization and in situ diffraction to facilitate ligand screening by X-ray crystallography. Acta Crystallogr D Biol Crystallogr 71:1777–1787PubMedCrossRefGoogle Scholar
- 65.Axford D, Aller P, Sanchez-Weatherby J, Sandy J (2016) Applications of thin-film sandwich crystallization platforms. Acta Crystallogr F Struct Biol Commun 72:313–319PubMedPubMedCentralCrossRefGoogle Scholar
- 66.Cipriani F, Röwer M, Landret C, Zander U, Felisaz F, Márquez JA (2012) CrystalDirect: a new method for automated crystal harvesting based on laser-induced photoablation of thin films. Acta Crystallogr D Biol Crystallogr 68:1393–1399PubMedCrossRefGoogle Scholar
- 67.Zander U, Hoffmann G, Cornaciu I et al (2016) Automated harvesting and processing of protein crystals through laser photoablation. Acta Crystallogr D Biol Crystallogr 72:454–466CrossRefGoogle Scholar
- 68.Caffrey M (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr F Struct Biol Commun 71:3–18PubMedPubMedCentralCrossRefGoogle Scholar
- 69.Huang CY, Olieric V, Ma P, Panepucci E, Diederichs K, Wang M, Caffrey M (2015) In meso in situ serial X-ray crystallography of soluble and membrane proteins. Acta Crystallogr D Biol Crystallogr 71:1238–1256PubMedPubMedCentralCrossRefGoogle Scholar
- 70.Huang CY, Olieric V, Ma P et al (2016) In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures. Acta Crystallogr D Biol Crystallogr 72:93–112CrossRefGoogle Scholar
- 71.Fraser JS, van den Bedem H, Samelson AJ, Lang PT, Holton JM, Echols N, Alber T (2011) Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci U S A 108:16247–16252PubMedPubMedCentralCrossRefGoogle Scholar
- 72.Keedy DA, Kenner LR, Warkentin M et al (2015) Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography. Elife 4:e07574PubMedPubMedCentralCrossRefGoogle Scholar
- 73.Leal RMF, Bourenkov G, Russi S, Popov AN (2013) A survey of global radiation damage to 15 different protein crystal types at room temperature: a new decay model. J Synchrotron Radiat 20:14–22PubMedCrossRefGoogle Scholar
- 74.Owen RL, Paterson N, Axford D, Aishima J, Schulze-Briese C, Ren J, Fry EE, Stuart DI, Evans G (2014) Exploiting fast detectors to enter a new dimension in room-temperature crystallography. Acta Crystallogr D Biol Crystallogr 70:1248–1256PubMedPubMedCentralCrossRefGoogle Scholar
- 75.Henderson R (1990) Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction. Proc R Soc Lond B 241:6–8CrossRefGoogle Scholar
- 76.Owen RL, Rudiño-Piñera E, Garman EF (2006) Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc Natl Acad Sci U S A 103:4912–4917PubMedPubMedCentralCrossRefGoogle Scholar
- 77.Evans G, Axford D, Owen RL (2011) The design of macromolecular crystallography diffraction experiments. Acta Crystallogr D Biol Crystallogr 67:261–270PubMedPubMedCentralCrossRefGoogle Scholar
- 78.Mueller M, Wang M, Schulze-Briese C (2012) Optimal fine φ-slicing for single-photon-counting pixel detectors. Acta Crystallogr D Biol Crystallogr 68:42–56PubMedCrossRefGoogle Scholar
- 79.Dauter Z (1999) Data-collection strategies. Acta Crystallogr D Biol Crystallogr 55:1703–1717PubMedCrossRefGoogle Scholar
- 80.Bourenkov GP, Popov AN (2006) A quantitative approach to data-collection strategies. Acta Crystallogr D Biol Crystallogr 62:58–64PubMedCrossRefGoogle Scholar
- 81.Borek D, Minor W, Otwinowski Z (2003) Measurement errors and their consequences in protein crystallography. Acta Crystallogr D Biol Crystallogr 59:2031–2038PubMedCrossRefGoogle Scholar
- 82.Liu ZJ, Chen L, Wu D, Ding W, Zhang H, Zhou W, Fu ZQ, Wang BC (2011) A multi-dataset data-collection strategy produces better diffraction data. Acta Crystallogr A 67:544–549PubMedPubMedCentralCrossRefGoogle Scholar
- 83.Weinert T, Olieric V, Waltersperger S et al (2015) Fast native-SAD phasing for routine macromolecular structure determination. Nat Methods 12:131–133PubMedCrossRefGoogle Scholar
- 84.Brockhauser S, White KI, AA MC, RBG R (2011) Translation calibration of inverse-kappa goniometers in macromolecular crystallography. Acta Crystallogr A 67:219–228PubMedPubMedCentralCrossRefGoogle Scholar
- 85.Waltersperger S, Olieric V, Pradervand C et al (2015) PRIGo: a new multi-axis goniometer for macromolecular crystallography. J Synchrotron Radiat 22:895–900PubMedPubMedCentralCrossRefGoogle Scholar
- 86.Liu Q, Dahmane T, Zhang Z, Assur Z, Brasch J, Shapiro L, Mancia F, Hendrickson WA (2012) Structures from anomalous diffraction of native biological macromolecules. Science 336:1033PubMedPubMedCentralCrossRefGoogle Scholar
- 87.Olieric V, Weinert T, Finke AD et al (2016) Data-collection strategy for challenging native SAD phasing. Acta Crystallogr D Biol Crystallogr 72:421–429CrossRefGoogle Scholar
- 88.Liu Q, Hendrickson WA (2015) Crystallographic phasing from weak anomalous signals. Curr Opin Struct Biol 34:99–107PubMedPubMedCentralCrossRefGoogle Scholar
- 89.Ayyer K, Philipp HT, Tate MW, Wierman JL, Elser V, Gruner SM (2015) Determination of crystallographic intensities from sparse data. IUCrJ 2:29–34PubMedPubMedCentralCrossRefGoogle Scholar
- 90.Holton JM (2009) A beginner’s guide to radiation damage. J Synchrotron Radiat 16:133–142PubMedPubMedCentralCrossRefGoogle Scholar
- 91.Kabsch W (2010) Xds. Acta Crystallogr D Biol Crystallogr 66:125–132PubMedPubMedCentralCrossRefGoogle Scholar
- 92.Kabsch W (2010) Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr 66:133–144PubMedPubMedCentralCrossRefGoogle Scholar
- 93.Battye TGG, Kontogiannis L, Johnson O, Powell HR, Leslie AGW (2011) iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr 67:271–281PubMedPubMedCentralCrossRefGoogle Scholar
- 94.Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326CrossRefGoogle Scholar
- 95.Brehm W, Diederichs K (2013) Breaking the indexing ambiguity in serial crystallography. Acta Crystallogr D Biol Crystallogr 70:101–109PubMedCrossRefGoogle Scholar
- 96.Arndt UW, Crowther RA, Mallett JF (1968) A computer-linked cathode-ray tube microdensitometer for X-ray crystallography. J Sci Instrum 1:510–516PubMedCrossRefGoogle Scholar
- 97.Diederichs K, Karplus A (1997) Improved R-factors. Nat Struct Biol 4:269–275PubMedCrossRefGoogle Scholar
- 98.Krojer T, von Delft F (2011) Assessment of radiation damage behaviour in a large collection of empirically optimized datasets highlights the importance of unmeasured complicating effects. J Synchrotron Radiat 18:387–397PubMedPubMedCentralCrossRefGoogle Scholar
- 99.Karplus PA, Diederichs K (2012) Linking crystallographic model and data quality. Science 336:1030–1033PubMedPubMedCentralCrossRefGoogle Scholar
- 100.Diederichs K, Karplus PA (2013) Better models by discarding data? Acta Crystallogr D Biol Crystallogr 69:1215–1222PubMedPubMedCentralCrossRefGoogle Scholar
- 101.Karplus PA, Diederichs K (2015) Assessing and maximizing data quality in macromolecular crystallography. Curr Opin Struct Biol 34:60–68PubMedPubMedCentralCrossRefGoogle Scholar
- 102.Assmann G, Brehm W, Diederichs K (2016) Identification of rogue datasets in serial crystallography. J Appl Crystallogr 49:1021–1028PubMedPubMedCentralCrossRefGoogle Scholar
- 103.Sheldrick GM (2010) Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D Biol Crystallogr 66:479–485PubMedPubMedCentralCrossRefGoogle Scholar
- 104.Adams PD, Afonine PV, Bunkóczi G et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221PubMedPubMedCentralCrossRefGoogle Scholar