Advertisement

Cell Cycle Resolved Measurements of Poly(ADP-Ribose) Formation and DNA Damage Signaling by Quantitative Image-Based Cytometry

  • Jone Michelena
  • Matthias AltmeyerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1608)

Abstract

Formation of poly(ADP-ribose) (PAR) marks intracellular stress signaling and is notably induced upon DNA damage. PAR polymerases (PARPs) catalyze PAR synthesis upon genotoxic stress and thereby recruit multiple proteins to damaged chromatin. PAR induction is transient and antagonized by the action of PAR glycohydrolase (PARG). Given that poly(ADP-ribosyl)ation (PARylation) is involved in genome integrity maintenance and other vital cellular functions, but also in light of the recent approval of PARP inhibitors for cancer treatments, reliable measurements of intracellular PAR formation have gained importance. Here we provide a detailed protocol for PAR measurements by quantitative image-based cytometry. This technique combines the high spatial resolution of single-cell microscopy with the advantages of cell population measurements through automated high-content imaging. Such upscaling of immunofluorescence-based PAR detection not only increases the robustness of the measurements through averaging across large cell populations but also allows for the discrimination of subpopulations and thus enables multivariate measurements of PAR levels and DNA damage signaling. We illustrate how this technique can be used to assess the dynamics of the cellular response to oxidative damage as well as to PARP inhibitor-induced genotoxicity in a cell cycle resolved manner. Due to the possibility to use any automated microscope for quantitative image-based cytometry, the presented method has widespread applicability in the area of PARP biology and beyond.

Key words

Poly(ADP-ribose) (PAR) PARP1 ARTD1 PARP inhibitors Olaparib DNA damage Cell cycle Cytometry High-content microscopy Quantitative single-cell analyses 

Notes

Acknowledgments

We are grateful to our lab members Thomas Schmid, Federico Teloni, and Stefania Pellegrino for their help with quantitative image-based cytometry and to Jiri Lukas and Luis Toledo for sharing reagents and exchange of unpublished results. Luis Toledo also provided valuable comments on the manuscript. Urs Ziegler and José María Mateos Melero from the Center for Microscopy and Image Analysis at the University of Zurich are acknowledged for expert microscopy support. Research in the lab of Matthias Altmeyer is financed by the Swiss National Science Foundation (SNSF Professorship Grant PP00P3_150690) and by the University of Zurich Association Research Talent Development Fund.

References

  1. 1.
    Hottiger MO (2015) Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu Rev Biochem 84:227–263. doi: 10.1146/annurev-biochem-060614-034506 CrossRefPubMedGoogle Scholar
  2. 2.
    Teloni F, Altmeyer M (2016) Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Res 44(3):993–1006. doi: 10.1093/nar/gkv1383 CrossRefPubMedGoogle Scholar
  3. 3.
    Altmeyer M, Neelsen KJ, Teloni F, Pozdnyakova I, Pellegrino S, Grofte M, Rask MB, Streicher W, Jungmichel S, Nielsen ML, Lukas J (2015) Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat Commun 6:8088. doi: 10.1038/ncomms9088 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Aguzzi A, Altmeyer M (2016) Phase separation: linking cellular compartmentalization to disease. Trends Cell Biol. 26(7):547–558 doi: 10.1016/j.tcb.2016.03.004 CrossRefPubMedGoogle Scholar
  5. 5.
    O’Connor MJ (2015) Targeting the DNA damage response in cancer. Mol Cell 60(4):547–560. doi: 10.1016/j.molcel.2015.10.040 CrossRefPubMedGoogle Scholar
  6. 6.
    Lord CJ, Ashworth A (2016) BRCAness revisited. Nat Rev Cancer. 16(2):110–120. doi: 10.1038/nrc.2015.21 CrossRefPubMedGoogle Scholar
  7. 7.
    Kraus WL (2015) PARPs and ADP-ribosylation: 50 years ... and counting. Mol Cell 58(6):902–910. doi: 10.1016/j.molcel.2015.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gagne JP, Haince JF, Pic E, Poirier GG (2011) Affinity-based assays for the identification and quantitative evaluation of noncovalent poly(ADP-ribose)-binding proteins. Methods Mol Biol 780:93–115. doi: 10.1007/978-1-61779-270-0_7 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gagne JP, Pic E, Isabelle M, Krietsch J, Ethier C, Paquet E, Kelly I, Boutin M, Moon KM, Foster LJ, Poirier GG (2012) Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress. Nucleic Acids Res 40(16):7788–7805. doi: 10.1093/nar/gks486 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Isabelle M, Gagne JP, Gallouzi IE, Poirier GG (2012) Quantitative proteomics and dynamic imaging reveal that G3BP-mediated stress granule assembly is poly(ADP-ribose)-dependent following exposure to MNNG-induced DNA alkylation. J Cell Sci 125(Pt 19):4555–4566. doi: 10.1242/jcs.106963 CrossRefPubMedGoogle Scholar
  11. 11.
    Jungmichel S, Rosenthal F, Altmeyer M, Lukas J, Hottiger MO, Nielsen ML (2013) Proteome-wide identification of poly(ADP-ribosyl)ation targets in different genotoxic stress responses. Mol Cell 52(2):272–285. doi: 10.1016/j.molcel.2013.08.026 CrossRefPubMedGoogle Scholar
  12. 12.
    Rosenthal F, Hottiger MO (2014) Identification of ADP-ribosylated peptides and ADP-ribose acceptor sites. Front Biosci 19:1041–1056CrossRefGoogle Scholar
  13. 13.
    Daniels CM, Ong SE, Leung AK (2015) The promise of proteomics for the study of ADP-ribosylation. Mol Cell 58(6):911–924. doi: 10.1016/j.molcel.2015.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bartolomei G, Leutert M, Manzo M, Baubec T, Hottiger MO (2016) Analysis of chromatin ADP-ribosylation at the genome-wide level and at specific loci by ADPr-ChAP. Mol Cell 61(3):474–485. doi: 10.1016/j.molcel.2015.12.025 CrossRefPubMedGoogle Scholar
  15. 15.
    Roukos V, Pegoraro G, Voss TC, Misteli T (2015) Cell cycle staging of individual cells by fluorescence microscopy. Nat Protoc 10(2):334–348. doi: 10.1038/nprot.2015.016 CrossRefPubMedGoogle Scholar
  16. 16.
    Blasi T, Hennig H, Summers HD, Theis FJ, Cerveira J, Patterson JO, Davies D, Filby A, Carpenter AE, Rees P (2016) Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nat Commun 7:10256. doi: 10.1038/ncomms10256 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Boutros M, Heigwer F, Laufer C (2015) Microscopy-based high-content screening. Cell 163(6):1314–1325. doi: 10.1016/j.cell.2015.11.007 CrossRefPubMedGoogle Scholar
  18. 18.
    Liberali P, Snijder B, Pelkmans L (2015) Single-cell and multivariate approaches in genetic perturbation screens. Nat Rev Genet 16(1):18–32. doi: 10.1038/nrg3768 CrossRefPubMedGoogle Scholar
  19. 19.
    Sailem HZ, Cooper S, Bakal C (2016) Visualizing quantitative microscopy data: history and challenges. Crit Rev Biochem Mol Biol 51(2):96–101. doi: 10.3109/10409238.2016.1146222 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Altmeyer M, Toledo L, Gudjonsson T, Grofte M, Rask MB, Lukas C, Akimov V, Blagoev B, Bartek J, Lukas J (2013) The chromatin scaffold protein SAFB1 renders chromatin permissive for DNA damage signaling. Mol Cell 52(2):206–220. doi: 10.1016/j.molcel.2013.08.025 CrossRefPubMedGoogle Scholar
  21. 21.
    Toledo LI, Altmeyer M, Rask MB, Lukas C, Larsen DH, Povlsen LK, Bekker-Jensen S, Mailand N, Bartek J, Lukas J (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155(5):1088–1103. doi: 10.1016/j.cell.2013.10.043 CrossRefPubMedGoogle Scholar
  22. 22.
    Larsen DH, Hari F, Clapperton JA, Gwerder M, Gutsche K, Altmeyer M, Jungmichel S, Toledo LI, Fink D, Rask MB, Grofte M, Lukas C, Nielsen ML, Smerdon SJ, Lukas J, Stucki M (2014) The NBS1-treacle complex controls ribosomal RNA transcription in response to DNA damage. Nat Cell Biol 16(8):792–803. doi: 10.1038/ncb3007 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ahuja AK, Jodkowska K, Teloni F, Bizard AH, Zellweger R, Herrador R, Ortega S, Hickson ID, Altmeyer M, Mendez J, Lopes M (2016) A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat Commun 7:10660. doi: 10.1038/ncomms10660 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Beneke S, Meyer K, Holtz A, Huttner K, Burkle A (2012) Chromatin composition is changed by poly(ADP-ribosyl)ation during chromatin immunoprecipitation. PLoS One 7(3):e32914. doi: 10.1371/journal.pone.0032914 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. doi: 10.1038/Nmeth.2019 CrossRefPubMedGoogle Scholar
  27. 27.
    Held M, Schmitz MHA, Fischer B, Walter T, Neumann B, Olma MH, Peter M, Ellenberg J, Gerlich DW (2010) CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat Methods 7(9):747–U118. doi: 10.1038/nmeth.1486 CrossRefPubMedGoogle Scholar
  28. 28.
    Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100. doi: 10.1186/gb-2006-7-10-r100 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland

Personalised recommendations