Advertisement

Compartment-Specific Poly-ADP-Ribose Formation as a Biosensor for Subcellular NAD Pools

  • Magali R. VanLinden
  • Marc Niere
  • Andrey A. Nikiforov
  • Mathias ZieglerEmail author
  • Christian Dölle
Part of the Methods in Molecular Biology book series (MIMB, volume 1608)

Abstract

Nicotinamide adenine dinucleotide (NAD) is vital to many cellular processes and is distributed between distinct subcellular pools in the compartmentalized eukaryotic cell. The detection and relative quantification of these individual pools is difficult because of the methods usually applied, which require cell disruption and fractionation.

Here, we describe an immunochemical method to visualize and relatively quantify subcellular NAD+ pools, which relies on the NAD+-consuming activity of poly-ADP-ribose polymerase 1 (PARP1). We demonstrate that this system can be readily applied to detect changes in the mitochondrial, Golgi, endoplasmic reticulum, and peroxisomal NAD+ pools.

Key words

Compartmentalization Mitochondria PARP1 Poly-ADP-ribose NAD Biosensor Immunocytochemistry Immunoblot analysis 

Notes

Acknowledgments

MVL, MN, MZ, and CD were supported by the Research Council of Norway (project #. 214435). A.A.N. was supported by the Russian Science Foundation (Grant # 16-14-10240).

References

  1. 1.
    Berger F, Ramirez-Hernandez MH, Ziegler M (2004) The new life of a centenarian: signalling functions of NAD(P). Trends Biochem Sci 29(3):111–118CrossRefPubMedGoogle Scholar
  2. 2.
    Koch-Nolte F, Fischer S, Haag F et al (2011) Compartmentation of NAD+-dependent signalling. FEBS Lett 585(11):1651–1656CrossRefPubMedGoogle Scholar
  3. 3.
    Yoshihara K, Hashida T, Yoshihara H et al (1977) Enzyme-bound early product of purified poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 78(4):1281–1288CrossRefPubMedGoogle Scholar
  4. 4.
    Desmarais Y, Menard L, Lagueux J et al (1991) Enzymological properties of poly(ADP-ribose)polymerase: characterization of automodification sites and NADase activity. Biochim Biophys Acta 1078(2):179–186CrossRefPubMedGoogle Scholar
  5. 5.
    Alvarez-Gonzalez R, Mendoza-Alvarez H (1995) Dissection of ADP-ribose polymer synthesis into individual steps of initiation, elongation, and branching. Biochimie 77(6):403–407CrossRefPubMedGoogle Scholar
  6. 6.
    Niere M, Kernstock S, Koch-Nolte F et al (2008) Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix. Mol Cell Biol 28(2):814–824CrossRefPubMedGoogle Scholar
  7. 7.
    Nikiforov A, Dölle C, Niere M et al (2011) Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation. J Biol Chem 286(24):21767–21778CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    VanLinden MR, Dölle C, Pettersen IK et al (2015) Subcellular distribution of NAD+ between cytosol and mitochondria determines the metabolic profile of human cells. J Biol Chem 290(46):27644–27659CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dölle C, Niere M, Lohndal E et al (2010) Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation. Cell Mol Life Sci 67(3):433–443CrossRefPubMedGoogle Scholar
  10. 10.
    Winstall E, Affar EB, Shah R et al (1999) Preferential perinuclear localization of poly(ADP-ribose) glycohydrolase. Exp Cell Res 251(2):372–378CrossRefPubMedGoogle Scholar
  11. 11.
    Meyer-Ficca ML, Meyer RG, Coyle DL et al (2004) Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp Cell Res 297(2):521–532CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Magali R. VanLinden
    • 1
  • Marc Niere
    • 1
  • Andrey A. Nikiforov
    • 2
    • 3
  • Mathias Ziegler
    • 1
    Email author
  • Christian Dölle
    • 4
    • 5
  1. 1.Department of Molecular BiologyUniversity of BergenBergenNorway
  2. 2.Institute of Cytology, Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  4. 4.Department of NeurologyHaukeland University HospitalBergenNorway
  5. 5.Department of Clinical MedicineUniversity of BergenBergenNorway

Personalised recommendations