Skip to main content

Compartment-Specific Poly-ADP-Ribose Formation as a Biosensor for Subcellular NAD Pools

  • Protocol
  • First Online:
Poly(ADP-Ribose) Polymerase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1608))

Abstract

Nicotinamide adenine dinucleotide (NAD) is vital to many cellular processes and is distributed between distinct subcellular pools in the compartmentalized eukaryotic cell. The detection and relative quantification of these individual pools is difficult because of the methods usually applied, which require cell disruption and fractionation.

Here, we describe an immunochemical method to visualize and relatively quantify subcellular NAD+ pools, which relies on the NAD+-consuming activity of poly-ADP-ribose polymerase 1 (PARP1). We demonstrate that this system can be readily applied to detect changes in the mitochondrial, Golgi, endoplasmic reticulum, and peroxisomal NAD+ pools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger F, Ramirez-Hernandez MH, Ziegler M (2004) The new life of a centenarian: signalling functions of NAD(P). Trends Biochem Sci 29(3):111–118

    Article  CAS  PubMed  Google Scholar 

  2. Koch-Nolte F, Fischer S, Haag F et al (2011) Compartmentation of NAD+-dependent signalling. FEBS Lett 585(11):1651–1656

    Article  CAS  PubMed  Google Scholar 

  3. Yoshihara K, Hashida T, Yoshihara H et al (1977) Enzyme-bound early product of purified poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 78(4):1281–1288

    Article  CAS  PubMed  Google Scholar 

  4. Desmarais Y, Menard L, Lagueux J et al (1991) Enzymological properties of poly(ADP-ribose)polymerase: characterization of automodification sites and NADase activity. Biochim Biophys Acta 1078(2):179–186

    Article  CAS  PubMed  Google Scholar 

  5. Alvarez-Gonzalez R, Mendoza-Alvarez H (1995) Dissection of ADP-ribose polymer synthesis into individual steps of initiation, elongation, and branching. Biochimie 77(6):403–407

    Article  CAS  PubMed  Google Scholar 

  6. Niere M, Kernstock S, Koch-Nolte F et al (2008) Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix. Mol Cell Biol 28(2):814–824

    Article  CAS  PubMed  Google Scholar 

  7. Nikiforov A, Dölle C, Niere M et al (2011) Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation. J Biol Chem 286(24):21767–21778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. VanLinden MR, Dölle C, Pettersen IK et al (2015) Subcellular distribution of NAD+ between cytosol and mitochondria determines the metabolic profile of human cells. J Biol Chem 290(46):27644–27659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dölle C, Niere M, Lohndal E et al (2010) Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation. Cell Mol Life Sci 67(3):433–443

    Article  PubMed  Google Scholar 

  10. Winstall E, Affar EB, Shah R et al (1999) Preferential perinuclear localization of poly(ADP-ribose) glycohydrolase. Exp Cell Res 251(2):372–378

    Article  CAS  PubMed  Google Scholar 

  11. Meyer-Ficca ML, Meyer RG, Coyle DL et al (2004) Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp Cell Res 297(2):521–532

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MVL, MN, MZ, and CD were supported by the Research Council of Norway (project #. 214435). A.A.N. was supported by the Russian Science Foundation (Grant # 16-14-10240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Ziegler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

VanLinden, M.R., Niere, M., Nikiforov, A.A., Ziegler, M., Dölle, C. (2017). Compartment-Specific Poly-ADP-Ribose Formation as a Biosensor for Subcellular NAD Pools. In: Tulin, A. (eds) Poly(ADP-Ribose) Polymerase. Methods in Molecular Biology, vol 1608. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6993-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6993-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6992-0

  • Online ISBN: 978-1-4939-6993-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics