Skip to main content

Identification of ADP-Ribose Acceptor Sites on In Vitro Modified Proteins by Liquid Chromatography–Tandem Mass Spectrometry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1608))

Abstract

Protein ADP-ribosylation is a covalent, reversible posttranslational modification (PTM) catalyzed by ADP-ribosyltransferases (ARTs). Proteins can be either mono- or poly-ADP-ribosylated under a variety of physiological and pathological conditions. To understand the functional contribution of protein ADP-ribosylation to normal and disease/stress states, modified protein and corresponding ADP-ribose acceptor site identification is crucial. Since ADP-ribosylation is a transient and relatively low abundant PTM, systematic and accurate identification of ADP-ribose acceptor sites has only recently become feasible. This is due to the development of specific ADP-ribosylated protein/peptide enrichment methodologies, as well as technical advances in high-accuracy liquid chromatography–tandem mass spectrometry (LC-MS/MS). The standardized protocol described here allows the identification of ADP-ribose acceptor sites in in vitro ADP-ribosylated proteins and will, thus, contribute to the functional characterization of this important PTM.

*These authors contributed equally to this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev: MMBR 70(3):789–829. doi:10.1128/MMBR.00040-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219. doi: 10.1016/j.tibs.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  3. Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT, Ahel I, Chang P (2014) Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun 5:4426. doi:10.1038/ncomms5426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, Dixon N, Ahel M, Leys D, Ahel I (2011) The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477(7366):616–620. doi:10.1038/nature10404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosenthal F, Feijs KL, Frugier E, Bonalli M, Forst AH, Imhof R, Winkler HC, Fischer D, Caflisch A, Hassa PO, Luscher B, Hottiger MO (2013) Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol 20(4):502–507. doi:10.1038/nsmb.2521

    Article  CAS  PubMed  Google Scholar 

  6. Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M, Timinszky G, Ladurner AG (2013) A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol 20(4):508–514. doi:10.1038/nsmb.2523

    Article  CAS  PubMed  Google Scholar 

  7. Daniels CM, Ong SE, Leung AK (2015) The promise of proteomics for the study of ADP-ribosylation. Mol Cell 58(6):911–924. doi:10.1016/j.molcel.2015.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y, Wang J, Ding M, Yu Y (2013) Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome. Nat Methods 10(10):981–984. doi:10.1038/nmeth.2603

    Article  CAS  PubMed  Google Scholar 

  9. Rosenthal F, Messner S, Roschitzki B, Gehrig P, Nanni P, Hottiger MO (2011) Identification of distinct amino acids as ADP-ribose acceptor sites by mass spectrometry. Methods Mol Biol 780:57–66. doi:10.1007/978-1-61779-270-0_4

    Article  CAS  PubMed  Google Scholar 

  10. Gagne JP, Ethier C, Defoy D, Bourassa S, Langelier MF, Riccio AA, Pascal JM, Moon KM, Foster LJ, Ning Z, Figeys D, Droit A, Poirier GG (2015) Quantitative site-specific ADP-ribosylation profiling of DNA-dependent PARPs. DNA Repair 30:68–79. doi:10.1016/j.dnarep.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  11. Matic I, Ahel I, Hay RT (2012) Reanalysis of phosphoproteomics data uncovers ADP-ribosylation sites. Nat Methods 9(8):771–772. doi:10.1038/nmeth.2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lang AE, Schmidt G, Schlosser A, Hey TD, Larrinua IM, Sheets JJ, Mannherz HG, Aktories K (2010) Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 327(5969):1139–1142. doi:10.1126/science.1184557

    Article  CAS  PubMed  Google Scholar 

  13. Chapman JD, Gagne JP, Poirier GG, Goodlett DR (2013) Mapping PARP-1 auto-ADP-ribosylation sites by liquid chromatography-tandem mass spectrometry. J Proteome Res 12(4):1868–1880. doi:10.1021/pr301219h

    Article  CAS  PubMed  Google Scholar 

  14. Daniels CM, Ong SE, Leung AK (2014) Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl)ation sites from cells. J Proteome Res 13(8):3510–3522. doi:10.1021/pr401032q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martello R, Leutert M, Jungmichel S, Bilan V, Larsen SC, Young C, Hottiger MO, Nielsen ML (2016) Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue. Nat Commun 7:12917. in press

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou H, Ye M, Dong J, Han G, Jiang X, Wu R, Zou H (2008) Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J Proteome Res 7(9):3957–3967. doi:10.1021/pr800223m

    Article  CAS  PubMed  Google Scholar 

  17. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. doi:10.1038/nmeth.1322

    Article  CAS  PubMed  Google Scholar 

  18. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906. doi:10.1038/nprot.2007.261

    Article  CAS  PubMed  Google Scholar 

  19. Rosenthal F, Nanni P, Barkow-Oesterreicher S, Hottiger MO (2015) Optimization of LTQ-orbitrap mass spectrometer parameters for the identification of ADP-ribosylation sites. J Proteome Res 14(9):4072–4079. doi:10.1021/acs.jproteome.5b00432

    Article  CAS  PubMed  Google Scholar 

  20. Hengel SM, Shaffer SA, Nunn BL, Goodlett DR (2009) Tandem mass spectrometry investigation of ADP-ribosylated kemptide. J Am Soc Mass Spectrom 20(3):477–483. doi:10.1016/j.jasms.2008.10.025

    Article  CAS  PubMed  Google Scholar 

  21. Savitski MM, Mathieson T, Becher I, Bantscheff M (2010) H-score, a mass accuracy driven rescoring approach for improved peptide identification in modification rich samples. J Proteome Res 9(11):5511–5516. doi:10.1021/pr1006813

    Article  CAS  PubMed  Google Scholar 

  22. Daniels CM, Thirawatananond P, Ong SE, Gabelli SB, Leung AK (2015) Nudix hydrolases degrade protein-conjugated ADP-ribose. Sci Rep 5:18271. doi:10.1038/srep18271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Paolo Nanni (member of the Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland) for advice and technical assistance. We also thank Felix R. Althaus (Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse) for providing hPARG-expressing baculovirus. Stephan Christen and Deena Leslie Pedrioli (both University of Zurich) provided editorial assistance and critical input during the writing. Work on ADP-ribosyltransferases in the laboratory of M.O.H is supported by Kanton of Zurich and the Swiss National Science Foundation (310030_157019).

Mario Leutert and Vera Bilan contributed equally to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O. Hottiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Leutert, M., Bilan, V., Gehrig, P., Hottiger, M.O. (2017). Identification of ADP-Ribose Acceptor Sites on In Vitro Modified Proteins by Liquid Chromatography–Tandem Mass Spectrometry. In: Tulin, A. (eds) Poly(ADP-Ribose) Polymerase. Methods in Molecular Biology, vol 1608. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6993-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6993-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6992-0

  • Online ISBN: 978-1-4939-6993-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics