Advertisement

Conditional Knockdown of Endogenous MicroRNAs in CHO Cells Using TET-ON-SanDI Sponge Vectors

  • Alan CostelloEmail author
  • Nga Lao
  • Martin Clynes
  • Niall Barron
Part of the Methods in Molecular Biology book series (MIMB, volume 1603)

Abstract

MicroRNAs (miRNAs) are small, noncoding RNAs of about 22 nucleotides in length and have proven to be useful targets for genetic modifications for desirable phenotype in the biotech industry. The use of constitutively expressed “miRNA sponge” vectors in which multiple, tandem miRNA binding sites containing transcripts are transcriptionally regulated by a constitutive promoter for down regulating the levels of endogenous microRNAs in Chinese hamster ovary (CHO) cells has shown to be more advantageous than using synthetic antisense oligonucleotides. The application of miRNA sponges in biotechnological processes, however, could be more effective, if expression of miRNA sponges could be tuned. In this chapter, we present a method for the generation of stable CHO cell lines expressing a TET-ON-SanDI-miRNA-sponge that is in theory expressed only in the presence of an inducer.

Key words

miRNA Sponge Knockdown Tetracycline TET-on Inducible CHO 

Notes

Acknowledgments

This work was supported by the Scientific Foundation of Ireland (SFI) grants numbers 13/IA/1963 and 13/IA/1841.

References

  1. 1.
    Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O'Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, Xie M, Chen W, Li N, Baycin-Hizal D, Latif H, Forster J, Betenbaugh MJ, Famili I, Xu X, Wang J, Palsson BO (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31:759–765. doi: 10.1038/nbt.2624 CrossRefPubMedGoogle Scholar
  2. 2.
    Jadhav V, Hackl M, Druz A, Shridhar S, Chung CY, Heffner KM, Kreil DP, Betenbaugh M, Shiloach J, Barron N, Grillari J, Borth N (2013) CHO microRNA engineering is growing up: recent successes and future challenges. Biotechnol Adv 31:1501–1513. doi: 10.1016/j.biotechadv.2013.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726CrossRefPubMedGoogle Scholar
  4. 4.
    Kluiver J, Gibcus JH, Hettinga C, Adema A, Richter MK, Halsema N, Slezak-Prochazka I, Ding Y, Kroesen BJ, van den Berg A (2012) Rapid generation of microRNA sponges for microRNA inhibition. PLoS One 7:e29275. doi: 10.1371/journal.pone.0029275 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sanchez N, Kelly P, Gallagher C, Lao NT, Clarke C, Clynes M, Barron N (2014) CHO cell culture longevity and recombinant protein yield are enhanced by depletion of miR-7 activity via sponge decoy vectors. Biotechnol J 9:396–404. doi: 10.1002/biot.201300325 CrossRefPubMedGoogle Scholar
  6. 6.
    Kelly PS, Breen L, Gallagher C, Kelly S, Henry M, Lao NT, Meleady P, O'Gorman D, Clynes M, Barron N (2015) Re-programming CHO cell metabolism using miR-23 tips the balance towards a highly productive phenotype. Biotechnol J 10:1029–1040. doi: 10.1002/biot.201500101 CrossRefPubMedGoogle Scholar
  7. 7.
    Brinster RL, Chen HY, Warren R, Sarthy A, Palmiter RD (1982) Regulation of metallothionein--thymidine kinase fusion plasmids injected into mouse eggs. Nature 296:39–42CrossRefPubMedGoogle Scholar
  8. 8.
    Mayo KE, Warren R, Palmiter RD (1982) The mouse metallothionein-I gene is transcriptionally regulated by cadmium following transfection into human or mouse cells. Cell 29:99–108CrossRefPubMedGoogle Scholar
  9. 9.
    Lee F, Mulligan R, Berg P, Ringold G (1981) Glucocorticoids regulate expression of dihydrofolate reductase cDNA in mouse mammary tumour virus chimaeric plasmids. Nature 294:228–232CrossRefPubMedGoogle Scholar
  10. 10.
    Lee SW, Tsou AP, Chan H, Thomas J, Petrie K, Eugui EM, Allison AC (1988) Glucocorticoids selectively inhibit the transcription of the interleukin 1 beta gene and decrease the stability of interleukin 1 beta mRNA. Proc Natl Acad Sci U S A 85:1204–1208CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89(12):5547–5551CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tovar K, Hillen W (1989) Tet repressor binding induced curvature of tet operator DNA. Nucleic Acids Res 17:6515–6522CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gossen M, Freundlieb S, Bender G, Müller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268(5218):1766–1769CrossRefPubMedGoogle Scholar
  14. 14.
    Hecht B, Muller G, Hillen W (1993) Noninducible Tet repressor mutations map from the operator binding motif to the C terminus. J Bacteriol 175:1206–1210CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hackl M, Jakobi T, Blom J, Doppmeier D, Brinkrolf K, Szczepanowski R, Bernhart SH, Höner Zu Siederdissen C, Bort JA, Wieser M, Kunert R, Jeffs S, Hofacker IL, Goesmann A, Pühler A, Borth N, Grillari J (2011) Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: identification, annotation and profiling of microRNAs as targets for cellular engineering. J Biotechnol 153(1–2):62–75CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zabala M, Wang L, Hernandez-Alcoceba R, Hillen W, Qian C, Prieto J, Kramer MG (2004) Optimization of the Tet-on system to regulate interleukin 12 expression in the liver for the treatment of hepatic tumors. Cancer Res 64:2799–2804CrossRefPubMedGoogle Scholar
  17. 17.
    McGee Sanftner LH, Rendahl KG, Quiroz D, Coyne M, Ladner M, Manning WC, Flannery JG (2001) Recombinant AAV-mediated delivery of a tet-inducible reporter gene to the rat retina. Mol Ther 3:688–696. doi: 10.1006/mthe.2001.0308 CrossRefPubMedGoogle Scholar
  18. 18.
    Sinacore MS, Drapeau D, Adamson SR (2000) Adaptation of mammalian cells to growth in serum-free media. Mol Biotechnol 15:249–257CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Alan Costello
    • 1
    Email author
  • Nga Lao
    • 1
  • Martin Clynes
    • 1
  • Niall Barron
    • 1
  1. 1.National Institute for Cellular BiotechnologyDublin City UniversityDublinIreland

Personalised recommendations