Engineer Medium and Feed for Modulating N-Glycosylation of Recombinant Protein Production in CHO Cell Culture

Part of the Methods in Molecular Biology book series (MIMB, volume 1603)


Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell. In this chapter, we will focus on how to carry out experiments for N-glycosylation modulation through medium and feed optimization. The workflow and typical methods involved in the experiment process will be presented.

Key words

Chinese hamster ovary cells N-Glycosylation Medium and feed optimization Fed-batch culture 


  1. 1.
    Berger M, Kaup M, Blanchard V (2012) Protein glycosylation and its impact on biotechnology. Adv Biochem Eng Biotechnol 127:165–185. doi: 10.1007/10_2011_101 PubMedGoogle Scholar
  2. 2.
    Butler M (2006) Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by Mammalian cell systems. Cytotechnology 50(1–3):57–76. doi: 10.1007/s10616-005-4537-x CrossRefPubMedGoogle Scholar
  3. 3.
    Costa AR, Rodrigues ME, Henriques M, Oliveira R, Azeredo J (2013) Glycosylation: impact, control and improvement during therapeutic protein production. Crit Rev Biotechnol 34(4):281–299. doi: 10.3109/07388551.2013.793649 CrossRefPubMedGoogle Scholar
  4. 4.
    Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19(9):936–949. doi: 10.1093/glycob/cwp079 CrossRefPubMedGoogle Scholar
  5. 5.
    Bruhlmann D, Jordan M, Hemberger J, Sauer M, Stettler M, Broly H (2015) Tailoring recombinant protein quality by rational media design. Biotechnol Prog 31(3):615–629. doi: 10.1002/btpr.2089 CrossRefPubMedGoogle Scholar
  6. 6.
    Liu B, Spearman M, Doering J, Lattova E, Perreault H, Butler M (2014) The availability of glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy and the N-glycosylation profile of a monoclonal antibody. J Biotechnol 170:17–27. doi: 10.1016/j.jbiotec.2013.11.007 CrossRefPubMedGoogle Scholar
  7. 7.
    Chee Furng Wong D, Tin Kam Wong K, Tang Goh L, Kiat Heng C, Gek Sim Yap M (2005) Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng 89(2):164–177. doi: 10.1002/bit.20317 CrossRefPubMedGoogle Scholar
  8. 8.
    Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DI (1999) Metabolic effects on recombinant interferon-gamma glycosylation in continuous culture of Chinese hamster ovary cells. Biotechnol Bioeng 62(3):336–347CrossRefPubMedGoogle Scholar
  9. 9.
    Nahrgang S, Kkagten E, De Jesus M, Bourgeois M, Déjardin S, Von Stockar U, Marison IW (2002) The effect of cell line, transfection procedure and reactor conditions on the glycosylation of recombinant human anti-rhesus D IgGl. In: Bernard A, Griffiths B, Noé W, Wurm F (eds) Animal cell technology: products from cells, cells as products. Springer, The Netherlands, pp 259–261. doi: 10.1007/0-306-46875-1_59 Google Scholar
  10. 10.
    Fan Y, Jimenez Del Val I, Muller C, Wagtberg Sen J, Rasmussen SK, Kontoravdi C, Weilguny D, Andersen MR (2015) Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Biotechnol Bioeng 112(3):521–535. doi: 10.1002/bit.25450 CrossRefPubMedGoogle Scholar
  11. 11.
    Fan Y, Jimenez Del Val I, Muller C, Lund AM, Sen JW, Rasmussen SK, Kontoravdi C, Baycin-Hizal D, Betenbaugh MJ, Weilguny D, Andersen MR (2015) A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture. Biotechnol Bioeng 112(10):2172–2184. doi: 10.1002/bit.25620 CrossRefPubMedGoogle Scholar
  12. 12.
    Kildegaard HF, Fan Y, Sen JW, Larsen B, Andersen MR (2016) Glycoprofiling effects of media additives on IgG produced by CHO cells in fed-batch bioreactors. Biotechnol Bioeng 113(2):359–366. doi: 10.1002/bit.25715 CrossRefPubMedGoogle Scholar
  13. 13.
    Schilling BM, Gangloff S, Kothari D, Leister K, Matlock L, Zegarelli SG, Joosten CE, Basch JD, Sakhamuri S, Lee SS (2008) Production quality enhancements in mammalian cell culture process for protein production. US Patent 7,332,303Google Scholar
  14. 14.
    Gramer MJ, Eckblad JJ, Donahue R, Brown J, Shultz C, Vickerman K, Priem P, van den Bremer ET, Gerritsen J, van Berkel PH (2011) Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol Bioeng 108(7):1591–1602. doi: 10.1002/bit.23075 CrossRefPubMedGoogle Scholar
  15. 15.
    St Amand MM, Tran K, Radhakrishnan D, Robinson AS, Ogunnaike BA (2014) Controllability analysis of protein glycosylation in CHO cells. PLoS One 9(2):e87973. doi: 10.1371/journal.pone.0087973 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    St Amand MM, Radhakrishnan D, Robinson AS, Ogunnaike BA (2014) Identification of manipulated variables for a glycosylation control strategy. Biotechnol Bioeng 111(10):1957–1970. doi: 10.1002/bit.25251 CrossRefPubMedGoogle Scholar
  17. 17.
    Chen P, Harcum SW (2005) Effects of amino acid additions on ammonium stressed CHO cells. J Biotechnol 117(3):277–286. doi: 10.1016/j.jbiotec.2005.02.003 CrossRefPubMedGoogle Scholar
  18. 18.
    Gawlitzek M, Ryll T, Lofgren J, Sliwkowski MB (2000) Ammonium alters N-glycan structures of recombinant TNFR-IgG: degradative versus biosynthetic mechanisms. Biotechnol Bioeng 68(6):637–646CrossRefPubMedGoogle Scholar
  19. 19.
    Crowell CK, Grampp GE, Rogers GN, Miller J, Scheinman RI (2007) Amino acid and manganese supplementation modulates the glycosylation state of erythropoietin in a CHO culture system. Biotechnol Bioeng 96(3):538–549. doi: 10.1002/bit.21141 CrossRefPubMedGoogle Scholar
  20. 20.
    Chen P, Harcum SW (2006) Effects of elevated ammonium on glycosylation gene expression in CHO cells. Metab Eng 8(2):123–132. doi: 10.1016/j.ymben.2005.10.002 CrossRefPubMedGoogle Scholar
  21. 21.
    Slade PG, Caspary RG, Nargund S, Huang CJ (2016) Mannose metabolism in recombinant CHO cells and its effect on IgG glycosylation. Biotechnol Bioeng 7(113):1468–1480. doi: 10.1002/bit.25924 CrossRefGoogle Scholar
  22. 22.
    Zupke C, Brady LJ, Slade PG, Clark P, Caspary RG, Livingston B, Taylor L, Bigham K, Morris AE, Bailey RW (2015) Real-time product attribute control to manufacture antibodies with defined N-linked glycan levels. Biotechnol Prog 31(5):1433–1441. doi: 10.1002/btpr.2136 CrossRefPubMedGoogle Scholar
  23. 23.
    Lamotte D, Buckberry L, Monaco L, Soria M, Jenkins N, Engasser JM, Marc A (1999) Na-butyrate increases the production and alpha2,6-sialylation of recombinant interferon-gamma expressed by alpha2,6- sialyltransferase engineered CHO cells. Cytotechnology 29(1):55–64. doi: 10.1023/A:1008080432681 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hong JK, Lee SM, Kim KY, Lee GM (2014) Effect of sodium butyrate on the assembly, charge variants, and galactosylation of antibody produced in recombinant Chinese hamster ovary cells. Appl Microbiol Biotechnol 98(12):5417–5425. doi: 10.1007/s00253-014-5596-8 CrossRefPubMedGoogle Scholar
  25. 25.
    Andersen DC, Bridges T, Gawlitzek M, Hoy C (2000) Multiple cell culture factors can affect the glycosylation of Asn-184 in CHO-produced tissue-type plasminogen activator. Biotechnol Bioeng 70(1):25–31CrossRefPubMedGoogle Scholar
  26. 26.
    Borys MC, Dalal NG, Abu-Absi NR, Khattak SF, Jing Y, Xing Z, Li ZJ (2010) Effects of culture conditions on N-glycolylneuraminic acid (Neu5Gc) content of a recombinant fusion protein produced in CHO cells. Biotechnol Bioeng 105(6):1048–1057. doi: 10.1002/bit.22644 PubMedGoogle Scholar
  27. 27.
    Gu X, Wang DI (1998) Improvement of interferon-gamma sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol Bioeng 58(6):642–648CrossRefPubMedGoogle Scholar
  28. 28.
    Yang M, Butler M (2002) Effects of ammonia and glucosamine on the heterogeneity of erythropoietin glycoforms. Biotechnol Prog 18(1):129–138. doi: 10.1021/bp0101334 CrossRefPubMedGoogle Scholar
  29. 29.
    Baker KN, Rendall MH, Hills AE, Hoare M, Freedman RB, James DC (2001) Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol Bioeng 73(3):188–202CrossRefPubMedGoogle Scholar
  30. 30.
    Wong NS, Wati L, Nissom PM, Feng HT, Lee MM, Yap MG (2010) An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding. Biotechnol Bioeng 107(2):321–336. doi: 10.1002/bit.22812 CrossRefPubMedGoogle Scholar
  31. 31.
    Kunkel JP, Jan DC, Jamieson JC, Butler M (1998) Dissolved oxygen concentration in serum-free continuous culture affects N-linked glycosylation of a monoclonal antibody. J Biotechnol 62(1):55–71CrossRefPubMedGoogle Scholar
  32. 32.
    Chotigeat W, Watanapokasin Y, Mahler S, Gray PP (1994) Role of environmental conditions on the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced by recombinant CHO cells. Cytotechnology 15(1–3):217–221CrossRefPubMedGoogle Scholar
  33. 33.
    Lin AA, Kimura R, Miller WM (1993) Production of tPA in recombinant CHO cells under oxygen-limited conditions. Biotechnol Bioeng 42(3):339–350. doi: 10.1002/bit.260420311 CrossRefPubMedGoogle Scholar
  34. 34.
    Hossler P (2012) Protein glycosylation control in Mammalian cell culture: past precedents and contemporary prospects. Adv Biochem Eng Biotechnol 127:187–219. doi: 10.1007/10_2011_113 PubMedGoogle Scholar
  35. 35.
    Zanghi JA, Mendoza TP, Schmelzer AE, Knop RH, Miller WM (1998) Role of nucleotide sugar pools in the inhibition of NCAM polysialylation by ammonia. Biotechnol Prog 14(6):834–844. doi: 10.1021/bp9800945 CrossRefPubMedGoogle Scholar
  36. 36.
    Kimura R, Miller WM (1997) Glycosylation of CHO-derived recombinant tPA produced under elevated pCO2. Biotechnol Prog 13(3):311–317. doi: 10.1021/bp9700162 CrossRefPubMedGoogle Scholar
  37. 37.
    Muthing J, Kemminer SE, Conradt HS, Sagi D, Nimtz M, Karst U, Peter-Katalinic J (2003) Effects of buffering conditions and culture pH on production rates and glycosylation of clinical phase I anti-melanoma mouse IgG3 monoclonal antibody R24. Biotechnol Bioeng 83(3):321–334. doi: 10.1002/bit.10673 CrossRefPubMedGoogle Scholar
  38. 38.
    Yoon SK, Choi SL, Song JY, Lee GM (2005) Effect of culture pH on erythropoietin production by Chinese hamster ovary cells grown in suspension at 32.5 and 37.0 degrees C. Biotechnol Bioeng 89(3):345–356. doi: 10.1002/bit.20353 CrossRefPubMedGoogle Scholar
  39. 39.
    Borys MC, Linzer DI, Papoutsakis ET (1993) Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells. Biotechnology 11(6):720–724CrossRefPubMedGoogle Scholar
  40. 40.
    Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, Kunert R, Vorauer-Uhl K, Weik R, Borth N, Katinger H, Muller D (2006) Process parameter shifting: Part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Biotechnol Bioeng 94(6):1033–1044. doi: 10.1002/bit.21013 CrossRefPubMedGoogle Scholar
  41. 41.
    Yoon SK, Song JY, Lee GM (2003) Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol Bioeng 82(3):289–298. doi: 10.1002/bit.10566 CrossRefPubMedGoogle Scholar
  42. 42.
    Agarabi CD, Schiel JE, Lute SC, Chavez BK, Boyne MT 2nd, Brorson KA, Khan MA, Read EK (2015) Bioreactor process parameter screening utilizing a Plackett-Burman design for a model monoclonal antibody. J Pharm Sci 104(6):1919–1928. doi: 10.1002/jps.24420 CrossRefPubMedGoogle Scholar
  43. 43.
    Senger RS, Karim MN (2003) Effect of shear stress on intrinsic CHO culture state and glycosylation of recombinant tissue-type plasminogen activator protein. Biotechnol Prog 19(4):1199–1209. doi: 10.1021/bp025715f CrossRefPubMedGoogle Scholar
  44. 44.
    Robinson DK, Chan CP, Yu Lp C, Tsai PK, Tung J, Seamans TC, Lenny AB, Lee DK, Irwin J, Silberklang M (1994) Characterization of a recombinant antibody produced in the course of a high yield fed-batch process. Biotechnol Bioeng 44(6):727–735. doi: 10.1002/bit.260440609 CrossRefPubMedGoogle Scholar
  45. 45.
    Pacis E, Yu M, Autsen J, Bayer R, Li F (2011) Effects of cell culture conditions on antibody N-linked glycosylation—what affects high mannose 5 glycoform. Biotechnol Bioeng 108(10):2348–2358. doi: 10.1002/bit.23200 CrossRefPubMedGoogle Scholar
  46. 46.
    Sha S, Agarabi C, Brorson K, Lee DY, Yoon S (2016) N-glycosylation design and control of therapeutic monoclonal antibodies. Trends Biotechnol 34(10):835–846. doi: 10.1016/j.tibtech.2016.02.013 CrossRefPubMedGoogle Scholar
  47. 47.
    Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87(5):614–622. doi: 10.1002/bit.20151 CrossRefPubMedGoogle Scholar
  48. 48.
    Mori K, Kuni-Kamochi R, Yamane-Ohnuki N, Wakitani M, Yamano K, Imai H, Kanda Y, Niwa R, Iida S, Uchida K, Shitara K, Satoh M (2004) Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol Bioeng 88(7):901–908. doi: 10.1002/bit.20326 CrossRefPubMedGoogle Scholar
  49. 49.
    Weikert S, Papac D, Briggs J, Cowfer D, Tom S, Gawlitzek M, Lofgren J, Mehta S, Chisholm V, Modi N, Eppler S, Carroll K, Chamow S, Peers D, Berman P, Krummen L (1999) Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat Biotechnol 17(11):1116–1121. doi: 10.1038/15104 CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang X, Lok SH, Kon OL (1998) Stable expression of human alpha-2,6-sialyltransferase in Chinese hamster ovary cells: functional consequences for human erythropoietin expression and bioactivity. Biochim Biophys Acta 1425(3):441–452CrossRefPubMedGoogle Scholar
  51. 51.
    Jassal R, Jenkins N, Charlwood J, Camilleri P, Jefferis R, Lund J (2001) Sialylation of human IgG-Fc carbohydrate by transfected rat alpha2,6-sialyltransferase. Biochem Biophys Res Commun 286(2):243–249. doi: 10.1006/bbrc.2001.5382 CrossRefPubMedGoogle Scholar
  52. 52.
    Ferrari J, Gunson J, Lofgren J, Krummen L, Warner TG (1998) Chinese hamster ovary cells with constitutively expressed sialidase antisense RNA produce recombinant DNase in batch culture with increased sialic acid. Biotechnol Bioeng 60(5):589–595CrossRefPubMedGoogle Scholar
  53. 53.
    Wong NS, Yap MG, Wang DI (2006) Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Biotechnol Bioeng 93(5):1005–1016. doi: 10.1002/bit.20815 CrossRefPubMedGoogle Scholar
  54. 54.
    Chenu S, Gregoire A, Malykh Y, Visvikis A, Monaco L, Shaw L, Schauer R, Marc A, Goergen JL (2003) Reduction of CMP-N-acetylneuraminic acid hydroxylase activity in engineered Chinese hamster ovary cells using an antisense-RNA strategy. Biochim Biophys Acta 1622(2):133–144CrossRefPubMedGoogle Scholar
  55. 55.
    Maszczak-Seneczko D, Olczak T, Jakimowicz P, Olczak M (2011) Overexpression of UDP-GlcNAc transporter partially corrects galactosylation defect caused by UDP-Gal transporter mutation. FEBS Lett 585(19):3090–3094. doi: 10.1016/j.febslet.2011.08.038 CrossRefPubMedGoogle Scholar
  56. 56.
    Sealover NR, Davis AM, Brooks JK, George HJ, Kayser KJ, Lin N (2013) Engineering Chinese hamster ovary (CHO) cells for producing recombinant proteins with simple glycoforms by zinc-finger nuclease (ZFN)-mediated gene knockout of mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (Mgat1). J Biotechnol 167(1):24–32. doi: 10.1016/j.jbiotec.2013.06.006 CrossRefPubMedGoogle Scholar
  57. 57.
    Kanda Y, Imai-Nishiya H, Kuni-Kamochi R, Mori K, Inoue M, Kitajima-Miyama K, Okazaki A, Iida S, Shitara K, Satoh M (2007) Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. J Biotechnol 130(3):300–310. doi: 10.1016/j.jbiotec.2007.04.025 CrossRefPubMedGoogle Scholar
  58. 58.
    Imai-Nishiya H, Mori K, Inoue M, Wakitani M, Iida S, Shitara K, Satoh M (2007) Double knockdown of alpha1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnol 7:84. doi: 10.1186/1472-6750-7-84 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Davies J, Jiang L, Pan LZ, LaBarre MJ, Anderson D, Reff M (2001) Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol Bioeng 74(4):288–294CrossRefPubMedGoogle Scholar
  60. 60.
    Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2):176–180. doi: 10.1038/6179 CrossRefPubMedGoogle Scholar
  61. 61.
    North SJ, Huang HH, Sundaram S, Jang-Lee J, Etienne AT, Trollope A, Chalabi S, Dell A, Stanley P, Haslam SM (2010) Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity. J Biol Chem 285(8):5759–5775. doi: 10.1074/jbc.M109.068353 CrossRefPubMedGoogle Scholar
  62. 62.
    von Horsten HH, Ogorek C, Blanchard V, Demmler C, Giese C, Winkler K, Kaup M, Berger M, Jordan I, Sandig V (2010) Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase. Glycobiology 20(12):1607–1618. doi: 10.1093/glycob/cwq109 CrossRefGoogle Scholar
  63. 63.
    Yang Z, Wang S, Halim A, Schulz MA, Frodin M, Rahman SH, Vester-Christensen MB, Behrens C, Kristensen C, Vakhrushev SY, Bennett EP, Wandall HH, Clausen H (2015) Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat Biotechnol 33(8):842–844. doi: 10.1038/nbt.3280 CrossRefPubMedGoogle Scholar
  64. 64.
    Hanko VP, Heckenberg A, Rohrer JS (2004) Determination of amino acids in cell culture and fermentation broth media using anion-exchange chromatography with integrated pulsed amperometric detection. J Biomol Tech 15(4):317–324PubMedPubMedCentralGoogle Scholar
  65. 65.
    Jimenez Del Val I, Kyriakopoulos S, Polizzi KM, Kontoravdi C (2013) An optimized method for extraction and quantification of nucleotides and nucleotide sugars from mammalian cells. Anal Biochem 443(2):172–180. doi: 10.1016/j.ab.2013.09.005 CrossRefGoogle Scholar
  66. 66.
    Kaas CS, Bolt G, Hansen JJ, Andersen MR, Kristensen C (2015) Deep sequencing reveals different compositions of mRNA transcribed from the F8 gene in a panel of FVIII-producing CHO cell lines. Biotechnol J 10(7):1081–1089. doi: 10.1002/biot.201400667 CrossRefPubMedGoogle Scholar
  67. 67.
    Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. doi: 10.1038/nmeth.1322 CrossRefPubMedGoogle Scholar
  68. 68.
    Rodriguez J, Spearman M, Huzel N, Butler M (2005) Enhanced production of monomeric interferon-beta by CHO cells through the control of culture conditions. Biotechnol Prog 21(1):22–30. doi: 10.1021/bp049807b CrossRefPubMedGoogle Scholar
  69. 69.
    Pande S, Rahardjo A, Livingston B, Mujacic M (2015) Monensin, a small molecule ionophore, can be used to increase high mannose levels on monoclonal antibodies generated by Chinese hamster ovary production cell-lines. Biotechnol Bioeng 112(7):1383–1394. doi: 10.1002/bit.25551 CrossRefPubMedGoogle Scholar
  70. 70.
    Castro PM, Ison AP, Hayter PM, Bull AT (1995) The macroheterogeneity of recombinant human interferon-gamma produced by Chinese-hamster ovary cells is affected by the protein and lipid content of the culture medium. Biotechnol Appl Biochem 21(Pt 1):87–100PubMedGoogle Scholar
  71. 71.
    Jenkins N, Castro P, Menon S, Ison A, Bull A (1994) Effect of lipid supplements on the production and glycosylation of recombinant interferon-gamma expressed in CHO cells. Cytotechnology 15(1–3):209–215CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Systems BiologyTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800 Kgs. LyngbyDenmark

Personalised recommendations