Skip to main content

High-Throughput Spheroid Screens Using Volume, Resazurin Reduction, and Acid Phosphatase Activity

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1601))

Abstract

Mainstream adoption of physiologically relevant three-dimensional models has been slow in the last 50 years due to long, manual protocols with poor reproducibility, high price, and closed commercial platforms. This chapter describes high-throughput, low-cost, open methods for spheroid viability assessment which use readily available reagents and open-source software to analyze spheroid volume, metabolism, and enzymatic activity. We provide two ImageJ macros for automated spheroid size determination—for both single images and images in stacks. We also share an Excel template spreadsheet allowing users to rapidly process spheroid size data, analyze plate uniformity (such as edge effects and systematic seeding errors), detect outliers, and calculate dose-response. The methods would be useful to researchers in preclinical and translational research planning to move away from simplistic monolayer studies and explore 3D spheroid screens for drug safety and efficacy without substantial investment in money or time.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ivanov DP, Parker TL, Walker DA et al (2014) Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres. PLoS One 9:e103817

    Article  PubMed  PubMed Central  Google Scholar 

  2. Astashkina A, Mann B, Grainger DW (2012) A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol Ther 134:82–106

    Article  CAS  PubMed  Google Scholar 

  3. Hickman JA, Graeser R, de Hoogt R et al (2014) Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol J 9:1115–1128

    Article  CAS  PubMed  Google Scholar 

  4. Moscona A, Moscona H (1952) The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J Anat 86:287–301

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sutherland RM, McCredie JA, Inch WR (1971) Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J Natl Cancer Inst 46:113–120

    CAS  PubMed  Google Scholar 

  6. Tung Y-C, Hsiao AY, Allen SG et al (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136:473–478

    Article  CAS  PubMed  Google Scholar 

  7. Kelm JM, Timmins NE, Brown CJ et al (2003) Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 83:173–180

    Article  CAS  PubMed  Google Scholar 

  8. Vinci M, Gowan S, Boxall F et al (2012) Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 10:1–21

    Article  Google Scholar 

  9. Ivascu A, Kubbies M (2006) Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen 11:922–932

    Article  CAS  PubMed  Google Scholar 

  10. Wenzel C, Riefke B, Gründemann S et al (2014) 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp Cell Res 323:131–143

    Article  CAS  PubMed  Google Scholar 

  11. Falkenberg N, Höfig I, Rosemann M et al (2016) Three-dimensional microtissues essentially contribute to preclinical validations of therapeutic targets in breast cancer. Cancer Med 5:703–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anastasov N, Höfig I, Radulović V et al (2015) A 3D-microtissue-based phenotypic screening of radiation resistant tumor cells with synchronized chemotherapeutic treatment. BMC Cancer 15:466

    Article  PubMed  PubMed Central  Google Scholar 

  13. da Motta LL, Ledaki I, Purshouse K et al (2016) The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene 36(1):122–132

    Article  PubMed  PubMed Central  Google Scholar 

  14. McIntyre A, Hulikova A, Ledaki I et al (2016) Disrupting hypoxia-induced bicarbonate transport acidifies tumor cells and suppresses tumor growth. Cancer Res 76:3744–3755

    Article  CAS  PubMed  Google Scholar 

  15. Bell CC, Hendriks DFG, Moro SML et al (2016) Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep 6:25187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ivanov DP, Al-Rubai A, Grabowska AM et al (2016) Separating chemotherapy-related developmental neurotoxicity from cytotoxicity in monolayer and neurosphere cultures of human fetal brain cells. Toxicol In Vitro 37:88–96

    Article  CAS  PubMed  Google Scholar 

  17. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  18. Schindelin J, Rueden CT, Hiner MC et al (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ivanov DP, Parker TL, Walker DA et al (2015) In vitro co-culture model of medulloblastoma and human neural stem cells for drug delivery assessment. J Biotechnol 205:3–13

    Article  CAS  PubMed  Google Scholar 

  20. Sutherland RM, Eddy HA, Bareham B et al (1979) Resistance to adriamycin in multicellular spheroids. Int J Radiat Oncol Biol Phys 5:1225–1230

    Article  CAS  PubMed  Google Scholar 

  21. Friedrich J, Seidel C, Ebner R et al (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4:309–324

    Article  CAS  PubMed  Google Scholar 

  22. O’Brien J, Wilson I, Orton T et al (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426

    Article  PubMed  Google Scholar 

  23. Walzl A, Unger C, Kramer N et al (2014) The resazurin reduction assay can distinguish cytotoxic from cytostatic compounds in spheroid screening assays. J Biomol Screen 19:1047–1059

    Article  PubMed  Google Scholar 

  24. Chan GKY, Kleinheinz TL, Peterson D et al (2013) A simple high-content cell cycle assay reveals frequent discrepancies between cell number and ATP and MTS proliferation assays. PLoS One 8:e63583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Friedrich J, Eder W, Castaneda J et al (2007) A reliable tool to determine cell viability in complex 3-d culture: the acid phosphatase assay. J Biomol Screen 12:925–937

    Article  CAS  PubMed  Google Scholar 

  26. Ivanov DP, Coyle B, Walker DA et al (2016) In vitro models of medulloblastoma: choosing the right tool for the job. J Biotechnol 236:10–25

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J-H (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  CAS  PubMed  Google Scholar 

  28. Hall MD, Telma KA, Chang K-E et al (2014) Say no to DMSO: dimethylsulfoxide inactivates cisplatin, carboplatin, and other platinum complexes. Cancer Res 74:3913–3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Delyan Ivanov was supported by an EPSRC Doctoral Prize award hosted by the University of Nottingham (DP2014/DI). The authors would like to thank Pamela Collier and Alan McIntyre for their help with manuscript editing. Special thanks to Neli Garbuzanova, Janhavi Apte, Arundhati Dongre, Parminder Dhesi, and Amarnath Pal for testing the macros and providing user feedback.

Supplementary Files

The macro files and Excel spreadsheet are available through the Figshare database:

Macro 1 link: https://figshare.com/s/32f81784ee28e3fde015 (DOI: 10.6084/m9.figshare.3487919).

Macro 2 link: https://figshare.com/s/9952d072c3238a60e134 (DOI: 10.6084/m9.figshare.3487943).

Volume analysis template: https://figshare.com/s/6c57cede1d940f6fd952 (DOI: 10.6084/m9.figshare.3487940).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delyan P. Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ivanov, D.P., Grabowska, A.M., Garnett, M.C. (2017). High-Throughput Spheroid Screens Using Volume, Resazurin Reduction, and Acid Phosphatase Activity. In: Gilbert, D., Friedrich, O. (eds) Cell Viability Assays. Methods in Molecular Biology, vol 1601. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6960-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6960-9_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6959-3

  • Online ISBN: 978-1-4939-6960-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics