Assessment of Population and ECM Production Using Multiphoton Microscopy as an Indicator of Cell Viability

Part of the Methods in Molecular Biology book series (MIMB, volume 1601)


Multiphoton microscopy allows continuous depth-resolved, nondestructive imaging of scaffold-seeded cells during cell or tissue culture. Spectrally separated images in high resolution can be provided while cells are conserved in their native state. Here we describe the seeding of mesenchymal stem cells to bacterial nanocellulose hydropolymer scaffolds followed by 2-channel imaging of cellular autofluorescence (AF) and collagen-I formation using second harmonic generation (SHG) signals. With this approach the simultaneous observation of the progression of cell morphology and production of extracellular matrix as hallmarks of viability and cell fitness is possible.

Key words

Multiphoton imaging Cell viability Extracellular matrix formation Collagen-I SHG Cellular autofluorescence Scaffold Bacterial nanocellulose 



This work was supported by the Emerging Fields Initiative (EFI) of the University of Erlangen-Nürnberg (project TOPbiomat) and the Erlangen Graduate School in Advanced Optical Technologies (SAOT) within the German Excellence Initiative. We want to thank Dana Kralisch and Nadine Hessler (JeNaCell GmbH) for providing BNC fleeces.


  1. 1.
    Gerhardt L-C, Widdows KL, Erol MM et al (2011) The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials 32:4096–4108. doi:10.1016/j.biomaterials.2011.02.032 CrossRefPubMedGoogle Scholar
  2. 2.
    Musson DS, Naot D, Chhana A et al (2015) In vitro evaluation of a novel non-mulberry silk scaffold for use in tendon regeneration. Tissue Eng Part A 21:1539–1551. doi:10.1089/ten.tea.2014.0128 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ramaswamy Y, Wu C, Van Hummel A et al (2008) The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic. Biomaterials 29:4392–4402. doi:10.1016/j.biomaterials.2008.08.006 CrossRefPubMedGoogle Scholar
  4. 4.
    Papadopoulos N, Dedoussis G, Spanakos G et al (1994) An improved fluorescence assay for the determination of lymphocyte-mediated cytotoxicity using flow cytometry. J Immunol Methods 177:101–111CrossRefPubMedGoogle Scholar
  5. 5.
    Yao J, Korotkova T, Smith RL (2011) Viability and proliferation of pluripotential cells delivered to tendon repair sites using bioactive sutures—an in vitro study. J Hand Surg [Am] 36:252–258. doi:10.1016/j.jhsa.2010.10.004 CrossRefGoogle Scholar
  6. 6.
    Rice WL, Kaplan DL, Georgakoudi I (2010) Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation. PLoS One 5:e10075. doi:10.1371/journal.pone.0010075 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lee H, Teng S, Chen H et al (2006) Imaging human bone marrow stem cell morphogenesis in polyglycolic acid scaffold by multiphoton microscopy. Tissue Eng 12:2835–2841CrossRefPubMedGoogle Scholar
  8. 8.
    Dittmar R, Potier E, Van Zandvoort M et al (2012) Assessment of cell viability in three-dimensional scaffolds using cellular auto-fluorescence. Tissue Eng Part C Methods 18:198–204. doi:10.1089/ten.tec.2011.0334 CrossRefPubMedGoogle Scholar
  9. 9.
    Chen W-L, Huang C-H, Chiou L-L et al (2010) Multiphoton imaging and quantitative analysis of collagen production by chondrogenic human mesenchymal stem cells cultured in chitosan scaffold. Tissue Eng Part C Methods 16:913–920. doi:10.1089/ten.TEC.2009.0596 CrossRefPubMedGoogle Scholar
  10. 10.
    Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci U S A 99:11014–11019. doi:10.1073/pnas.172368799 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940. doi:10.1038/nmeth818 CrossRefPubMedGoogle Scholar
  12. 12.
    Ustione A, Piston DW (2011) A simple introduction to multiphoton microscopy. J Microsc 243:221–226. doi:10.1111/j.1365-2818.2011.03532.x CrossRefPubMedGoogle Scholar
  13. 13.
    Zipfel WR, Williams RM, Christie R et al (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci U S A 100:7075–7080. doi:10.1073/pnas.0832308100 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Van der Rest M, Garrone R (1991) Collagen family of proteins. FASEB J 5:2814–2823PubMedGoogle Scholar
  15. 15.
    Orgel JPRO, Miller A, Irving TC et al (2001) The in situ supermolecular structure of type I collagen. Structure 9:1061–1069CrossRefPubMedGoogle Scholar
  16. 16.
    Vielreicher M, Schürmann S, Detsch R et al (2013) Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine. J R Soc Interface 10:20130263. doi:10.1098/rsif.2013.0263 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Vielreicher M, Gellner M, Rottensteiner U et al (2015) Multiphoton microscopy analysis of extracellular collagen I network formation by mesenchymal stem cells. J Tissue Eng Regen Med. doi:10.1002/term.2107 PubMedGoogle Scholar
  18. 18.
    Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRefGoogle Scholar
  19. 19.
    Wiegand C, Moritz S, Hessler N et al (2015) Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. J Mater Sci Mater Med 26:245. doi:10.1007/s10856-015-5571-7 CrossRefPubMedGoogle Scholar
  20. 20.
    Kralisch D, Hessler N, Klemm D et al (2010) White biotechnology for cellulose manufacturing—the HoLiR concept. Biotechnol Bioeng 105:740–747. doi:10.1002/bit.22579 PubMedGoogle Scholar
  21. 21.
    Nadiarnykh O, Lacomb RB, Campagnola PJ et al (2007) Coherent and incoherent SHG in fibrillar cellulose matrices. Opt Express 15:3348–3360CrossRefPubMedGoogle Scholar
  22. 22.
    Brackmann C, Zaborowska M, Sundberg J et al (2012) In situ imaging of collagen synthesis by osteoprogenitor cells in microporous bacterial cellulose scaffolds. Tissue Eng Part C Methods 18:227–234. doi:10.1089/ten.tec.2011.0211 CrossRefPubMedGoogle Scholar
  23. 23.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019 CrossRefPubMedGoogle Scholar
  24. 24.
    Lee P-F, Yeh AT, Bayless KJ (2009) Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices. Exp Cell Res 315:396–410. doi:10.1016/j.yexcr.2008.10.040 CrossRefPubMedGoogle Scholar
  25. 25.
    Boerboom RA, Krahn KN, Megens RTA et al (2007) High resolution imaging of collagen organisation and synthesis using a versatile collagen specific probe. J Struct Biol 159:392–399. doi:10.1016/j.jsb.2007.04.008 CrossRefPubMedGoogle Scholar
  26. 26.
    Rezakhaniha R, Agianniotis A, Schrauwen JTC et al (2011) Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol 11(3–4):461–473. doi:10.1007/s10237-011-0325-z PubMedGoogle Scholar
  27. 27.
    Sun YEN, Tan H, Lin S et al (2008) Imaging tissue engineering scaffolds using multiphoton microscopy. Microsc Res Tech 71:140–145. doi:10.1002/jemt.20537 CrossRefPubMedGoogle Scholar
  28. 28.
    Rice WL, Firdous S, Gupta S et al (2008) Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy. Biomaterials 29:2015–2024. doi:10.1016/j.biomaterials.2007.12.049 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bottan S, Robotti F, Jayathissa P et al (2015) Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). ACS Nano 9:206–219. doi:10.1021/nn5036125 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Friedrich-Alexander University (FAU) Erlangen-NürnbergInstitute of Medical BiotechnologyErlangenGermany

Personalised recommendations