Phenotyping Cellular Viability by Functional Analysis of Ion Channels: GlyR-Targeted Screening in NT2-N Cells

  • Katharina Kuenzel
  • Sepideh Abolpour Mofrad
  • Daniel F. Gilbert
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1601)

Abstract

Glycine receptor chloride channels (GlyRs) are attractive drug targets for therapeutic intervention and are also more and more recognized in the context of in vitro neurotoxicity and developmental neurotoxicity testing. Assaying the functional properties of GlyR can serve as an indicator of cellular viability and the integrity of the developing and mature central nervous system. Human pluripotent NTERA-2 (NT2) stem cells undergo neuronal differentiation upon stimulation with retinoic acid and express a large variety of neuronal proteins—including GlyR. YFP-I152L, a halide-sensitive variant of yellow fluorescent protein, allows high-throughput fluorescence-based functional analysis of GlyRs in NT2 cells. Here we describe a protocol for phenotyping of cellular viability by functional analysis of GlyR in neuronally differentiated NT2 (NT2-N) cells using YFP-I152L as a reporter of functional integrity of GlyRs. The protocol describes neuronal differentiation of NT2 stem cells, transient transfection of NT2-N cells with YFP-I152L as well as functional imaging and analysis of data from high-content imaging.

Key words

Human pluripotent embryonal teratocarcinoma stem cells NT2 cells NT2-N cells Glycine receptor chloride channel (GlyR) YFP-I152L Cell viability Toxicological screening 

Notes

Acknowledgments

The authors gratefully acknowledge funding of the Staedtler Stiftung and Bavarian Equal Opportunities Sponsorship— Förderung von Frauen in Forschung und Lehre (FFL)—Promoting Equal Opportunities for Women in Research and Teaching. Mofrad SA performed the present work in fulfillment of the requirements for obtaining the degree Dr. rer. biol. hum. at the Friedrich- Alexander University of Erlangen-Nürnberg (FAU).

References

  1. 1.
    Lynch JW (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84:1051–1095CrossRefPubMedGoogle Scholar
  2. 2.
    Lynch JW, Callister RJ (2006) Glycine receptors: a new therapeutic target in pain pathways. Curr Opin Invest Drug 7:48–53Google Scholar
  3. 3.
    Webb TI, Lynch JW (2007) Molecular pharmacology of the glycine receptor chloride channel. Curr Pharm Des 13:2350–2367CrossRefPubMedGoogle Scholar
  4. 4.
    Meier JC, Henneberger C, Melnick I et al (2005) RNA editing produces glycine receptor alpha 3(P185L), resulting in high agonist potency. Nat Neurosci 8:736–744CrossRefPubMedGoogle Scholar
  5. 5.
    Eichler SA, Kirischuk S, Juttner R et al (2008) Glycinergic tonic inhibition of hippocampal neurons with depolarizing GABAergic transmission elicits histopathological signs of temporal lobe epilepsy. J Cell Mol Med 12:2848–2866CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Eichler SA, Forstera B, Smolinsky B et al (2009) Splice-specific roles of glycine receptor alpha 3 in the hippocampus. Euro J Neurosci 30:1077–1091CrossRefGoogle Scholar
  7. 7.
    Xiong W, Cui T, Cheng K et al (2012) Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors. J Exp Med 209:1121–1134CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Harvey RJ, Depner UB, Wassle H et al (2004) GlyR alpha 3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304:884–887CrossRefPubMedGoogle Scholar
  9. 9.
    Zeilhofer HU (2005) The glycinergic control of spinal pain processing. Cell Mol Life Sci 62:2027–2035CrossRefPubMedGoogle Scholar
  10. 10.
    Bode A, Lynch JW (2014) The impact of human hyperekplexia mutations on glycine receptor structure and function. Molec Brain 7:2–2CrossRefGoogle Scholar
  11. 11.
    Chung SK, Vanbellinghen JF, Mullins JG et al (2010) Pathophysiological mechanisms of dominant and recessive GLRA1 mutations in hyperekplexia. J Neurosci 30:9612–9620CrossRefPubMedGoogle Scholar
  12. 12.
    Hall RCW, Hall RCW (1999) Long-term psychological and neurological complications of lindane poisoning. Psychosomatics 40:513–517CrossRefPubMedGoogle Scholar
  13. 13.
    Islam R, Lynch JW (2012) Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels. Br J Pharmacol 165:2707–2720CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kuenzel K, Friedrich O, Gilbert DF (2016) A recombinant human pluripotent stem cell line stably expressing halide-sensitive YFP-I152L for GABAAR and GlyR-targeted high-throughput drug screening and toxicity testing. Front Mol Neurosci 9:51CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Talwar S, Lynch JW, Gilbert DF (2013) Fluorescence-based high-throughput functional profiling of ligand-gated ion channels at the level of single cells. PLoS One 8:e58479CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Alexander SP, Peters JA, Kelly E et al (2015) The concise guide to pharmacology 2015/16: ligand-gated ion channels. Br J Pharmacol 172:5870–5903CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Vale C, Fonfra E, Bujons J et al (2003) The organochlorine pesticides γ-hexachlorocyclohexane (lindane), α-endosulfan and dieldrin differentially interact with GABAA and glycine-gated chloride channels in primary cultures of cerebellar granule cells. Neuroscience 117:397–403CrossRefPubMedGoogle Scholar
  18. 18.
    Narahashi T (2002) Nerve membrane ion channels as the target site of insecticides. Mini-Rev Med Chem 2:419–432CrossRefPubMedGoogle Scholar
  19. 19.
    Mohamed F, Senarathna L, Percy A et al (2004) Acute human self-poisoning with the N-phenylpyrazole insecticide fipronil—a GABAA-gated chloride channel blocker. J Toxicol, Clin Toxicol 42:955–963CrossRefGoogle Scholar
  20. 20.
    Lee VM, Andrews PW (1986) Differentiation of NTERA-2 clonal human embryonal carcinoma cells into neurons involves the induction of all three neurofilament proteins. J Neurosci 6:514–521PubMedGoogle Scholar
  21. 21.
    Pleasure SJ, Page C, Lee VM (1992) Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J Neurosci 12:1802–1815PubMedGoogle Scholar
  22. 22.
    Sandhu JK, Sikorska M, Walker PR (2002) Characterization of astrocytes derived from human NTera-2/D1 embryonal carcinoma cells. J Neurosci Res 68:604–614CrossRefPubMedGoogle Scholar
  23. 23.
    Stewart R, Christie VB, Przyborski SA (2003) Manipulation of human pluripotent embryonal carcinoma stem cells and the development of neural subtypes. Stem cells 21:248–256CrossRefPubMedGoogle Scholar
  24. 24.
    Ozdener H (2007) Inducible functional expression of Bcl-2 in human astrocytes derived from NTera-2 cells. J Neurosci Method 159:8–18CrossRefGoogle Scholar
  25. 25.
    Coyne L, Shan M, Przyborski SA et al (2011) Neuropharmacological properties of neurons derived from human stem cells. Neurochem Int 59:404–412CrossRefPubMedGoogle Scholar
  26. 26.
    Laurenza I, Pallocca G, Mennecozzi M et al (2013) A human pluripotent carcinoma stem cell-based model for in vitro developmental neurotoxicity testing: effects of methylmercury, lead and aluminum evaluated by gene expression studies. International journal of developmental neuroscience: the official journal of the International Society for. Dev Neurosci 31:679–691CrossRefGoogle Scholar
  27. 27.
    Gao L, Lyons AR, Greenfield LJ Jr (2004) Hypoxia alters GABAA receptor function and subunit expression in NT2-N neurons. Neuropharmacology 46:318–330CrossRefPubMedGoogle Scholar
  28. 28.
    Neelands TR, Greenfield LJ Jr, Zhang J et al (1998) GABAA receptor pharmacology and subtype mRNA expression in human neuronal NT2-N cells. J Neurosci 18:4993–5007PubMedGoogle Scholar
  29. 29.
    Munir M, Lu L, Wang YH et al (1996) Pharmacological and immunological characterization of N-methyl-D-aspartate receptors in human NT2-N neurons. J Pharmacol Exp Therap 276:819–828Google Scholar
  30. 30.
    Galietta LJ, Haggie PM, Verkman AS (2001) Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett 499:220–224CrossRefPubMedGoogle Scholar
  31. 31.
    Balansa W, Islam R, Fontaine F et al (2010) Ircinialactams: subunit-selective glycine receptor modulators from Australian sponges of the family Irciniidae. Bioorg Med Chem 18:2912–2919CrossRefPubMedGoogle Scholar
  32. 32.
    Balansa W, Islam R, Fontaine F et al (2013) Sesterterpene glycinyl-lactams: a new class of glycine receptor modulator from Australian marine sponges of the genus Psammocinia. Org Biomol Chem 11:4695–4701CrossRefPubMedGoogle Scholar
  33. 33.
    Balansa W, Islam R, Gilbert DF et al (2013) Australian marine sponge alkaloids as a new class of glycine-gated chloride channel receptor modulator. Bioorg Med Chem 21:4420–4425CrossRefPubMedGoogle Scholar
  34. 34.
    Gebhardt FM, Mitrovic AD, Gilbert DF et al (2010) Exon-skipping splice variants of excitatory amino acid transporter-2 (EAAT2) form heteromeric complexes with full-length EAAT2. J Biol Chem 285:31313–31324CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gilbert D, Esmaeili A, Lynch JW (2009) Optimizing the expression of recombinant alphabetagamma GABAA receptors in HEK293 cells for high-throughput screening. J Biomolec Screen 14:86–91CrossRefGoogle Scholar
  36. 36.
    Gilbert DF, Islam R, Lynagh T et al (2009) High throughput techniques for discovering new glycine receptor modulators and their binding sites. Front Molec Neurosci 2:17CrossRefGoogle Scholar
  37. 37.
    Gilbert DF, Wilson JC, Nink V et al (2009) Multiplexed labeling of viable cells for high-throughput analysis of glycine receptor function using flow cytometry. Cytomet Part A 75:440–449CrossRefGoogle Scholar
  38. 38.
    Kruger W, Gilbert D, Hawthorne R et al (2005) A yellow fluorescent protein-based assay for high-throughput screening of glycine and GABAA receptor chloride channels. Neurosci Lett 380:340–345CrossRefPubMedGoogle Scholar
  39. 39.
    Walzik MP, Vollmar V, Lachnit T et al (2015) A portable low-cost long-term live-cell imaging platform for biomedical research and education. Biosens Bioelectron 64:639–649CrossRefPubMedGoogle Scholar
  40. 40.
    Wilhelm F, Winkler U, Morawski M et al (2011) The human ubiquitin C promoter drives selective expression in principal neurons in the brain of a transgenic mouse line. Neurochem Int 59:976–980CrossRefPubMedGoogle Scholar
  41. 41.
    Abolpour Mofrad S, Kuenzel K, Friedrich O et al (2016) Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures. Developm Grow Differen 58:664–676CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Katharina Kuenzel
    • 1
  • Sepideh Abolpour Mofrad
    • 1
  • Daniel F. Gilbert
    • 2
  1. 1.Institute of Medical BiotechnologyFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Friedrich-Alexander University (FAU) Erlangen-NürnbergInstitute of Medical BiotechnologyErlangenGermany

Personalised recommendations