Advertisement

Aptamer-Based Trapping: Enrichment of Bacillus cereus Spores for Real-Time PCR Detection

  • Christin Fischer
  • Markus Fischer
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1600)

Abstract

Aptamer-based trapping techniques are in general suitable to replace common antibody-based enrichment approaches. A time-consuming isolation or clean-up is often necessary during sample preparation, e.g. for the detection of spores. For the development of bioanalytical routine approaches, aptamers with a high affinity to B. cereus spores were applied for the establishment and validation of an aptamer-based trapping technique in milk with fat contents between 0.3 and 3.5%. Thereby, enrichment factors of up to sixfold were achieved. The combination of an aptamer-based enrichment by magnetic separation and the subsequent specific real-time PCR detection represents a reliable and rapid detection system.

Key words

Aptamer Bacillus cereus Spore trapping Real-time PCR Milk Food poisoning 

Notes

Acknowledgement

This research project was supported by the German Ministry of Economics and Technology (via AiF) and the FEI (Forschungskreis der Ernaehrungsindustrie e. V., Bonn, Germany); Project AiF 331 ZN.

The author’s thank Dr. Tim Hünniger, Jan-Hinnerk Jarck, and Esther Frohnmeyer for practical support and discussion.

References

  1. 1.
    Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolstø A-B (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Drobniewski F (1994) The safety of Bacillus species as insect vector control agents. J Appl Bacteriol 76:101–109CrossRefPubMedGoogle Scholar
  3. 3.
    Bruno JG, Ulvick SJ, Uzzell GL, Tabb JS, Valdes ER, Batt CA (2001) Novel immuno-FRET assay method for Bacillus spores and Escherichia coli O157:H7. Biochem Biophys Res Commun 287:875–880CrossRefPubMedGoogle Scholar
  4. 4.
    Bennet RW, Harmon SM (1990) Bacillus cereus food poisoning. Laboratory diagnosis of infectious disesases: principles and practice. Bacterial, mycotic and parasitic diseases. Springer-Verlag, New YorkGoogle Scholar
  5. 5.
    Lambert B, Peferoen M (1992) Insecticidal promise of Bacillus thuringiensis. Bioscience 42:112–122CrossRefGoogle Scholar
  6. 6.
    de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199CrossRefPubMedGoogle Scholar
  7. 7.
    Setlow P (1994) Mechanisms which contribute to the long-term survival of spores of Bacillus species. J Appl Bacteriol 76:49S–60SCrossRefGoogle Scholar
  8. 8.
    Beutling D, Böttcher C (1998) Bacillus cereus: ein Risikofaktor in Lebensmitteln. Arch Lebensmittelhyg 49:90–96Google Scholar
  9. 9.
    Mahler H, Pasi A, Kramer JM, Schulte P, Scoging AC, Bar W, Krahenbuhl S (1997) Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N Engl J Med 336:1142–1148CrossRefPubMedGoogle Scholar
  10. 10.
    Dufrenne J, Bijwaard M, Te Giffel M, Beumer R, Notermans S (1995) Characteristics of some psychrotrophic Bacillus cereus isolates. Int J Food Microbiol 27:175–183CrossRefPubMedGoogle Scholar
  11. 11.
    Regulation C (2005) No. 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Official J Eur Union L 338:1–26Google Scholar
  12. 12.
    Tombelli S, Minunni M, Mascini M (2007) Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 24:191–200CrossRefPubMedGoogle Scholar
  13. 13.
    Wehrle E, Didier A, Moravek M, Dietrich R, Märtlbauer E (2010) Detection of Bacillus cereus with enteropathogenic potential by multiplex real-time PCR based on SYBR green I. Mol Cell Probes 24:24–130CrossRefGoogle Scholar
  14. 14.
    Fischer C, Hünniger T, Jarck J-H, Frohnmeyer E, Kallinich C, Haase I, Hahn U, Fischer M (2015) Food sensing: aptamer-based trapping of Bacillus cereus spores with specific detection via real time PCR in milk. J Agric Food Chem 63:8050–8057CrossRefPubMedGoogle Scholar
  15. 15.
    Hünniger T, Wessels H, Fischer C, Paschke-Kratzin A, Fischer M (2014) Just in time-selection: a rapid semiautomated SELEX of DNA aptamers using magnetic separation and BEAMing. Anal Chem 86:10940–10947CrossRefPubMedGoogle Scholar
  16. 16.
    Hünniger T, Fischer C, Wessels H, Hoffmann A, Paschke-Kratzin A, Haase I, Fischer M (2015) Food sensing: selection and characterization of DNA aptamers to Alicyclobacillus spores for trapping and detection from orange juice. J Agric Food Chem 63:2189–2197CrossRefPubMedGoogle Scholar
  17. 17.
    Hünniger T, Felbinger C, Wessels H, Mast S, Hoffmann A, Schefer A, Martlbauer E, Paschke-Kratzin A, Fischer M (2015) Food targeting: a real-time PCR assay targeting 16S rDNA for direct quantification of Alicyclobacillus spp. Spores after aptamer-based enrichment. J Agric Food Chem 63:4291–4296CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Hamburg School of Food Science, Institute of Food ChemistryUniversity of HamburgHamburgGermany

Personalised recommendations