Aptamer-Based Trapping: Enrichment of Bacillus cereus Spores for Real-Time PCR Detection

  • Christin Fischer
  • Markus Fischer
Part of the Methods in Molecular Biology book series (MIMB, volume 1600)


Aptamer-based trapping techniques are in general suitable to replace common antibody-based enrichment approaches. A time-consuming isolation or clean-up is often necessary during sample preparation, e.g. for the detection of spores. For the development of bioanalytical routine approaches, aptamers with a high affinity to B. cereus spores were applied for the establishment and validation of an aptamer-based trapping technique in milk with fat contents between 0.3 and 3.5%. Thereby, enrichment factors of up to sixfold were achieved. The combination of an aptamer-based enrichment by magnetic separation and the subsequent specific real-time PCR detection represents a reliable and rapid detection system.

Key words

Aptamer Bacillus cereus Spore trapping Real-time PCR Milk Food poisoning 



This research project was supported by the German Ministry of Economics and Technology (via AiF) and the FEI (Forschungskreis der Ernaehrungsindustrie e. V., Bonn, Germany); Project AiF 331 ZN.

The author’s thank Dr. Tim Hünniger, Jan-Hinnerk Jarck, and Esther Frohnmeyer for practical support and discussion.


  1. 1.
    Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolstø A-B (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Drobniewski F (1994) The safety of Bacillus species as insect vector control agents. J Appl Bacteriol 76:101–109CrossRefPubMedGoogle Scholar
  3. 3.
    Bruno JG, Ulvick SJ, Uzzell GL, Tabb JS, Valdes ER, Batt CA (2001) Novel immuno-FRET assay method for Bacillus spores and Escherichia coli O157:H7. Biochem Biophys Res Commun 287:875–880CrossRefPubMedGoogle Scholar
  4. 4.
    Bennet RW, Harmon SM (1990) Bacillus cereus food poisoning. Laboratory diagnosis of infectious disesases: principles and practice. Bacterial, mycotic and parasitic diseases. Springer-Verlag, New YorkGoogle Scholar
  5. 5.
    Lambert B, Peferoen M (1992) Insecticidal promise of Bacillus thuringiensis. Bioscience 42:112–122CrossRefGoogle Scholar
  6. 6.
    de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199CrossRefPubMedGoogle Scholar
  7. 7.
    Setlow P (1994) Mechanisms which contribute to the long-term survival of spores of Bacillus species. J Appl Bacteriol 76:49S–60SCrossRefGoogle Scholar
  8. 8.
    Beutling D, Böttcher C (1998) Bacillus cereus: ein Risikofaktor in Lebensmitteln. Arch Lebensmittelhyg 49:90–96Google Scholar
  9. 9.
    Mahler H, Pasi A, Kramer JM, Schulte P, Scoging AC, Bar W, Krahenbuhl S (1997) Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N Engl J Med 336:1142–1148CrossRefPubMedGoogle Scholar
  10. 10.
    Dufrenne J, Bijwaard M, Te Giffel M, Beumer R, Notermans S (1995) Characteristics of some psychrotrophic Bacillus cereus isolates. Int J Food Microbiol 27:175–183CrossRefPubMedGoogle Scholar
  11. 11.
    Regulation C (2005) No. 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Official J Eur Union L 338:1–26Google Scholar
  12. 12.
    Tombelli S, Minunni M, Mascini M (2007) Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 24:191–200CrossRefPubMedGoogle Scholar
  13. 13.
    Wehrle E, Didier A, Moravek M, Dietrich R, Märtlbauer E (2010) Detection of Bacillus cereus with enteropathogenic potential by multiplex real-time PCR based on SYBR green I. Mol Cell Probes 24:24–130CrossRefGoogle Scholar
  14. 14.
    Fischer C, Hünniger T, Jarck J-H, Frohnmeyer E, Kallinich C, Haase I, Hahn U, Fischer M (2015) Food sensing: aptamer-based trapping of Bacillus cereus spores with specific detection via real time PCR in milk. J Agric Food Chem 63:8050–8057CrossRefPubMedGoogle Scholar
  15. 15.
    Hünniger T, Wessels H, Fischer C, Paschke-Kratzin A, Fischer M (2014) Just in time-selection: a rapid semiautomated SELEX of DNA aptamers using magnetic separation and BEAMing. Anal Chem 86:10940–10947CrossRefPubMedGoogle Scholar
  16. 16.
    Hünniger T, Fischer C, Wessels H, Hoffmann A, Paschke-Kratzin A, Haase I, Fischer M (2015) Food sensing: selection and characterization of DNA aptamers to Alicyclobacillus spores for trapping and detection from orange juice. J Agric Food Chem 63:2189–2197CrossRefPubMedGoogle Scholar
  17. 17.
    Hünniger T, Felbinger C, Wessels H, Mast S, Hoffmann A, Schefer A, Martlbauer E, Paschke-Kratzin A, Fischer M (2015) Food targeting: a real-time PCR assay targeting 16S rDNA for direct quantification of Alicyclobacillus spp. Spores after aptamer-based enrichment. J Agric Food Chem 63:4291–4296CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Hamburg School of Food Science, Institute of Food ChemistryUniversity of HamburgHamburgGermany

Personalised recommendations