A Cell-Based Fluorescent Assay to Detect the Activity of AB Toxins that Inhibit Protein Synthesis

  • Patrick Cherubin
  • Beatriz Quiñones
  • Salem Elkahoui
  • Wallace Yokoyama
  • Ken TeterEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1600)


Many AB toxins elicit a cytotoxic effect involving the inhibition of protein synthesis. In this chapter, we describe a simple cell-based fluorescent assay to detect and quantify the inhibition of protein synthesis. The assay can also identify and characterize toxin inhibitors.

Key words

AB toxin Ricin Shiga toxin Toxin detection Toxin inhibitors Toxicity assay Vero cells 



This material is based upon work supported by the US Department of Agriculture, Agricultural Research Service, under the Non-Assistance Cooperative Agreement (NACA) No. 58-5325-4-024. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the US Department of Agriculture. The authors thank Dr. Lucia Cilenti for technical assistance with the Accuri flow cytometer (BD Biosciences, San Jose, CA).


  1. 1.
    Sandvig K, van Deurs B (2005) Delivery into cells: lessons learned from plant and bacterial toxins. Gene Ther 12:865–872CrossRefPubMedGoogle Scholar
  2. 2.
    Spooner RA, Lord JM (2015) Ricin trafficking in cells. Toxins (Basel) 7:49–65CrossRefGoogle Scholar
  3. 3.
    Murphy JR (2011) Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins (Basel) 3:294–308CrossRefGoogle Scholar
  4. 4.
    Lee MS, Koo S, Jeong DG et al (2016) Shiga toxins as multi-functional proteins: induction of host cellular stress responses, role in pathogenesis and therapeutic applications. Toxins (Basel) 8:E77CrossRefGoogle Scholar
  5. 5.
    Michalska M, Wolf P (2015) Pseudomonas exotoxin A: optimized by evolution for effective killing. Front Microbiol 6:963CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Konowalchuk J, Speirs JI, Stavric S (1977) Vero response to a cytotoxin of Escherichia coli. Infect Immun 18:775–779PubMedPubMedCentralGoogle Scholar
  7. 7.
    Paton JC, Paton AW (1998) Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev 11:450–479PubMedPubMedCentralGoogle Scholar
  8. 8.
    Gamage SD, McGannon CM, Weiss AA (2004) Escherichia coli serogroup O107/O117 lipopolysaccharide binds and neutralizes Shiga toxin 2. J Bacteriol 186:5506–5512CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sekino T, Kiyokawa N, Taguchi T et al (2004) Characterization of a Shiga-toxin 1-resistant stock of vero cells. Microbiol Immunol 48:377–387CrossRefPubMedGoogle Scholar
  10. 10.
    Pauly D, Worbs S, Kirchner S et al (2012) Real-time cytotoxicity assay for rapid and sensitive detection of ricin from complex matrices. PLoS One 7:e35360CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wahome PG, Bai Y, Neal LM et al (2010) Identification of small-molecule inhibitors of ricin and Shiga toxin using a cell-based high-throughput screen. Toxicon 56:313–323CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hovde CJ, Calderwood SB, Mekalanos JJ et al (1988) Evidence that glutamic acid 167 is an active-site residue of Shiga-like toxin I. Proc Natl Acad Sci U S A 85:2568–2572CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Obrig TG, Louise CB, Lingwood CA et al (1993) Endothelial heterogeneity in Shiga toxin receptors and responses. J Biol Chem 268:15484–15488PubMedGoogle Scholar
  14. 14.
    Zhao L, Haslam DB (2005) A quantitative and highly sensitive luciferase-based assay for bacterial toxins that inhibit protein synthesis. J Med Microbiol 54:1023–1030CrossRefPubMedGoogle Scholar
  15. 15.
    Gal Y, Alcalay R, Sabo T et al (2015) Rapid assessment of antibody-induced ricin neutralization by employing a novel functional cell-based assay. J Immunol Methods 424:136–139CrossRefPubMedGoogle Scholar
  16. 16.
    Cohen O, Mechaly A, Sabo T et al (2014) Characterization and epitope mapping of the polyclonal antibody repertoire elicited by ricin holotoxin-based vaccination. Clin Vaccine Immunol 21:1534–1540CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Quiñones B, Massey S, Friedman M et al (2009) Novel cell-based method to detect Shiga toxin 2 from Escherichia coli O157:H7 and inhibitors of toxin activity. Appl Environ Microbiol 75:1410–1416CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li X, Zhao X, Fang Y et al (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273:34970–34975CrossRefPubMedGoogle Scholar
  19. 19.
    Halter M, Almeida JL, Tona A et al (2009) A mechanistically relevant cytotoxicity assay based on the detection of cellular GFP. Assay Drug Dev Technol 7:356–365CrossRefPubMedGoogle Scholar
  20. 20.
    Cherubin P, Garcia MC, Curtis D et al (2016) Inhibition of cholera toxin and other AB toxins by polyphenolic compounds. PLoS One 11:e0166477CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lazarus SA, Adamson GE, Hammerstone JF et al (1999) High-performance liquid chromatography/mass spectrometry analysis of proanthocyanidins in foods and beverages. J Agric Food Chem 47:3693–3701CrossRefPubMedGoogle Scholar
  22. 22.
    Dyer PD, Kotha AK, Gollings AS et al (2016) An in vitro evaluation of epigallocatechin gallate (eGCG) as a biocompatible inhibitor of ricin toxin. Biochim Biophys Acta 1860:1541–1550CrossRefPubMedGoogle Scholar
  23. 23.
    Massey S, Quiñones B, Teter K (2011) A cell-based fluorescent assay to detect the activity of Shiga toxin and other toxins that inhibit protein synthesis. Methods Mol Biol 739:49–59CrossRefPubMedGoogle Scholar
  24. 24.
    Rasooly R, He X (2012) Sensitive bioassay for detection of biologically active ricin in food. J Food Prot 75:951–954CrossRefPubMedGoogle Scholar
  25. 25.
    Quiñones B, Swimley MS, Taylor AW et al (2011) Identification of Escherichia coli O157 by using a novel colorimetric detection method with DNA microarrays. Foodborne Pathog Dis 8:705–711CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Quiñones B, Swimley MS (2011) Use of a vero cell-based fluorescent assay to assess relative toxicities of Shiga toxin 2 subtypes from Escherichia coli. Methods Mol Biol 739:61–71CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Patrick Cherubin
    • 1
  • Beatriz Quiñones
    • 2
  • Salem Elkahoui
    • 3
  • Wallace Yokoyama
    • 4
  • Ken Teter
    • 1
    Email author
  1. 1.Burnett School of Biomedical Sciences, College of MedicineUniversity of Central FloridaOrlandoUSA
  2. 2.USDA-ARS, Produce Safety and Microbiology Research UnitWestern Regional Research CenterAlbanyUSA
  3. 3.Laboratoire des Substances Bioactives, Le Centre de Biotechnologie à la Technopole de Borj-CédriaHammam-LifTunisia
  4. 4.USDA-ARS, Healthy Processed Foods Research UnitWestern Regional Research CenterAlbanyUSA

Personalised recommendations