Advertisement

Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins

  • Jessica Daniel
  • Lisa Fetter
  • Susan Jett
  • Teisha J. Rowland
  • Andrew J. Bonham
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1600)

Abstract

Electrochemical DNA (E-DNA) biosensors enable the detection and quantification of a variety of molecular targets, including oligonucleotides, small molecules, heavy metals, antibodies, and proteins. Here we describe the design, electrode preparation and sensor attachment, and voltammetry conditions needed to generate and perform measurements using E-DNA biosensors against two protein targets, the biological toxins ricin and botulinum neurotoxin. This method can be applied to generate E-DNA biosensors for the detection of many other protein targets, with potential advantages over other systems including sensitive detection limits typically in the nanomolar range, real-time monitoring, and reusable biosensors.

Key words

Biosensors Toxins Electrochemical Aptamer Botulism Ricin Voltammetry E-DNA Gold electrodes Proteins 

Notes

Acknowledgment

This work would not be possible without ideas from Kevin Plaxco, University of California Santa Barbara, and Ryan White, University of Maryland Baltimore County. Support for this work was provided by the Metropolitan State University of Denver’s College of Letters, Arts, and Sciences Dean’s office, Provost’s office, and the Applied Learning Center.

References

  1. 1.
    Miranda-Castro R, de-los-Santos-Álvarez N, Lobo-Castañón MJ (2016) Aptamers as synthetic receptors for food quality and safety control. Compr Anal Chem 74:155–191. doi: 10.1016/bs.coac.2016.03.021 CrossRefGoogle Scholar
  2. 2.
    Ferguson BS, Hoggarth DA, Maliniak D et al (2013) Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci Transl Med 5:213ra165CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lee TM-H (2008) Over-the-counter biosensors: past, present, and future. Sensors 8:5535–5559CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lubin AA, Lai RY, Baker BR et al (2006) Sequence-specific, electronic detection of oligonucleotides in blood, soil, and foodstuffs with the reagentless, reusable E-DNA sensor. Anal Chem 78:5671–5677CrossRefPubMedGoogle Scholar
  5. 5.
    Hasanzadeh M, Shadjou N (2016) Electrochemical nanobiosensing in whole blood: recent advances. TrAC Trends Anal Chem 80:167–176CrossRefGoogle Scholar
  6. 6.
    Lubin AA, Plaxco KW (2010) Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc Chem Res 43:496–505CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Vallee-Belisle A, Bonham AJ, Reich NO et al (2011) Transcription factor beacons for the quantitative detection of DNA binding activity. J Am Chem Soc 133:13836–13839CrossRefPubMedGoogle Scholar
  8. 8.
    Schaffner SR, Norquest K, Baravik E et al (2014) Conformational design optimization of transcription factor beacon DNA biosensors. Sens Bio-Sensing Res 2:49–54CrossRefGoogle Scholar
  9. 9.
    Fetter L, Richards J, Daniel J et al (2015) Electrochemical aptamer scaffold biosensors for detection of botulism and ricin toxins. Chem Commun (Camb) 51:15137–15140CrossRefGoogle Scholar
  10. 10.
    Rowe AA, White RJ, Bonham AJ, Plaxco KW (2011) Fabrication of electrochemical-DNA biosensors for the reagentless detection of nucleic acids, proteins and small molecules. J Vis Exp 52:e2922Google Scholar
  11. 11.
    Ricci F, Plaxco KW (2008) E-DNA sensors for convenient, label-free electrochemical detection of hybridization. Microchim Acta 163:149–155CrossRefGoogle Scholar
  12. 12.
    Xiao Y, Uzawa T, White RJ et al (2009) On the signaling of electrochemical aptamer-based sensors: collision- and folding-based mechanisms. Electroanalysis 21:1267–1271CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu J, Wagan S, Dávila-Morris M et al (2014) Achieving reproducible performance of electrochemical folding aptamer-based sensors on microelectrodes: challenges and prospects. Anal Chem 86:11417–11424CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xiao Y, Rowe AA, Plaxco KW (2007) Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J Am Chem Soc 129:262–263CrossRefPubMedGoogle Scholar
  15. 15.
    Vallée-Bélisle A, Ricci F, Uzawa T et al (2012) Bioelectrochemical switches for the quantitative detection of antibodies directly in whole blood. J Am Chem Soc 134:15197–15200CrossRefPubMedGoogle Scholar
  16. 16.
    Bonham AJ, Hsieh K, Ferguson BS et al (2012) Quantification of transcription factor binding in cell extracts using an electrochemical, structure-switching biosensor. J Am Chem Soc 134:3346–3348CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33:W577–W581CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vazquez-Cintron EJ, Vakulenko M, Band PA et al (2014) Atoxic derivative of botulinum neurotoxin a as a prototype molecular vehicle for targeted delivery to the neuronal cytoplasm. PLoS One 9:e85517CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Xiao Y, Lai RY, Plaxco KW (2007) Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Nat Protoc 2:2875–2880CrossRefPubMedGoogle Scholar
  20. 20.
    Creager SE, Olsen KG (1995) Self-assembled monolayers and enzyme electrodes: progress, problems and prospects. Anal Chim Acta 307:277–289CrossRefGoogle Scholar
  21. 21.
    White RJ, Plaxco KW (2009) Exploiting binding-induced changes in probe flexibility for the optimization of electrochemical biosensors. Anal Chem 82:73–76CrossRefGoogle Scholar
  22. 22.
    Uzawa T, Cheng RR, White RJ et al (2010) A mechanistic study of electron transfer from the distal termini of electrode-bound, single-stranded DNAs. J Am Chem Soc 132:16120–16126CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Vallée-Bélisle A, Ricci F, Plaxco KW (2012) Engineering biosensors with extended, narrowed, or arbitrarily edited dynamic range. J Am Chem Soc 134:2876–2879CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Vallée-Bélisle A, Plaxco KW (2010) Structure-switching biosensors: inspired by Nature. Curr Opin Struct Biol 20:518–526CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    White RJ, Plaxco KW (2009) Engineering new aptamer geometries for electrochemical aptamer-based sensors. In: Fell NF, Jr, Swaminathan VS (eds) Proc Soc Photo Opt Instrum Eng. SPIE, Department of Chemistry and Biochemistry University of California, Santa Barbara, Santa Barbara, CA 93106-9510, p 732105Google Scholar
  26. 26.
    Schoukroun-Barnes LR, Wagan S, White RJ (2014) Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics. Anal Chem 86:1131–1137CrossRefPubMedGoogle Scholar
  27. 27.
    White RJ, Phares N, Lubin AA et al (2008) Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry. Langmuir 24:10513–10518CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Huang K-C, White RJ (2013) Random walk on a leash: a simple single-molecule diffusion model for surface-tethered redox molecules with flexible linkers. J Am Chem Soc 135:12808–12817CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Jessica Daniel
    • 1
  • Lisa Fetter
    • 1
  • Susan Jett
    • 1
  • Teisha J. Rowland
    • 2
  • Andrew J. Bonham
    • 1
  1. 1.Department of ChemistryMetropolitan State University of DenverDenverUSA
  2. 2.Cardiovascular Institute and Adult Medical Genetics ProgramUniversity of Colorado Denver Anschutz Medical CampusAuroraUSA

Personalised recommendations