Micromethods for Isolation and Structural Characterization of Lipid A, and Polysaccharide Regions of Bacterial Lipopolysaccharides

  • Alexey Novikov
  • Aude Breton
  • Martine CaroffEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1600)


Lipopolysaccharides (LPS) are major components of the external membrane of most Gram-negative bacteria, providing them with an effective permeability barrier. They are essentially composed of a hydrophilic polysaccharide region (PS) linked to a hydrophobic one, termed lipid A. The LPS polysaccharide moiety is divided into the core oligosaccharide (OS) and O-chain repetitive elements. Depending on their individual variable fine structures, LPS may be potent immunomodulators. The lipid A structure is a key determinant for LPS activity. However, the presence of the core region, or at least of the highly charged 3-deoxy-d-manno-oct-2-ulosonic acid molecules, is also important for preserving the native lipid A conformation within individual LPS molecules. We describe herein four rapid and practical micromethods for LPS, lipid A, and core OS structural analyses. The first method allows the direct isolation of lipid A from whole bacteria cell mass; the second describes conditions for the sequential release of fatty acids enabling the characterization of their substitution position in the lipid A backbone, to be determined by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The third one is a microscale procedure for the mass spectra screening of LPS, lipid A, and PS using triethylamine and citric acid. The fourth method is a chromatography procedure for Rough-type LPS on thin-layer-chromatography. These methods were developed to be coupled to mass-spectrometry (e.g., MALDI-MS) but can also be used with other analytical techniques (e.g., chromatography). Examples are given with reference to two major human pathogens: Bordetella pertussis and Pseudomonas aeruginosa; to one porcine pathogen: Actinobacillus pleuropneumoniae; and to commercial samples of Salmonella Minnesota Re595 LPS.

Key words

Gas chromatography 3-Deoxy-d-manno-oct-2-ulosonic acid Lipooligosaccharide Lipopolysaccharide Matrix-assisted laser desorption/ionization mass spectrometry Polyacrylamide gel electrophoresis Sodium dodecyl sulfate Triethylamine Thin-layer chromatography 



Aude Breton is a recipient of a CIFRE grant in collaboration with the LPS-BioSciences company. We thank Pr. Gottschalk for his kind exchanges and expertise with App strains and isolates.


  1. 1.
    Caroff MGL, Karibian D (1990) Several uses for isobutyric acid-ammonium hydroxide solvent in endotoxin analysis. Appl Environ Microbiol 56:1957–1959PubMedPubMedCentralGoogle Scholar
  2. 2.
    Caroff M, Brisson JR, Martin A, Karibian D (2000) Structure of the Bordetella pertussis 1414 endotoxin. FEBS Lett 477:8–14CrossRefPubMedGoogle Scholar
  3. 3.
    Ciornei CD, Novikov A, Beloin C, Fitting C, Caroff M, Ghigo JM, Cavaillon JM, Adib-Conquy M (2010) Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes. Innate Immun 16:288–301CrossRefPubMedGoogle Scholar
  4. 4.
    El Hamidi A, Tirsoaga A, Novikov A, Hussein A, Caroff M (2005) Microextraction of bacterial lipid A: easy and rapid method for mass spectrometric characterization. J Lipid Res 46:1773–1778CrossRefPubMedGoogle Scholar
  5. 5.
    Aussel L, Therisod H, Karibian D, Perry MB, Bruneteau M, Caroff M (2000) Novel variation of lipid A structures in strains of different Yersinia species. FEBS Lett 465:87–92CrossRefPubMedGoogle Scholar
  6. 6.
    Tirsoaga A, El Hamidi A, Perry MB, Caroff M, Novikov A (2007) A rapid, small-scale procedure for the structural characterization of lipid A applied to Citrobacter and Bordetella strains: discovery of a new structural element. J Lipid Res 48:2419–2427CrossRefPubMedGoogle Scholar
  7. 7.
    Caroff M, Deprun C, Richards JC, Karibian D (1994) Structural characterization of the lipid A of Bordetella pertussis 1414 endotoxin. J Bacteriol 176:5156–5159CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Marr N, Tirsoaga A, Blanot D, Fernandez R, Caroff M (2008) Glucosamine found as a substituent of both phosphate groups in Bordetella lipid A backbones: role of a BvgAS-activated ArnT ortholog. J Bacteriol 190:4281–4290CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chafchaouni-Moussaoui I, Novikov A, Bhrada F, Perry MB, Filali-Maltouf A, Caroff M (2011) A new rapid and micro-scale hydrolysis, using triethylamine citrate, for lipopolysaccharide characterization by mass spectrometry. Rapid Commun Mass Spectrom 25:2043–2048CrossRefPubMedGoogle Scholar
  10. 10.
    Karibian D, Brunelle A, Aussel L, Caroff M (1999) 252Cf-plasma desorption mass spectrometry of unmodified lipid A: fragmentation patterns and localization of fatty acids. Rapid Commun Mass Spectrom 13:2252–2259CrossRefPubMedGoogle Scholar
  11. 11.
    Therisod H, Labas V, Caroff M (2001) Direct microextraction and analysis of rough-type lipopolysaccharides by combined thin-layer chromatography and MALDI mass spectrometry. Anal Chem 73:3804–3807CrossRefPubMedGoogle Scholar
  12. 12.
    Rosner MR, Tang J, Barzilay I, Khorana HG (1979) Structure of the lipopolysaccharide from an Escherichia coli heptose-less mutant: I. Chemical degradations and identification of products. J Biol Chem 254:5906–5917PubMedGoogle Scholar
  13. 13.
    Caroff M, Tacken A, Szabo L (1988) Detergent-accelerated hydrolysis of bacterial endotoxins and determination of the anomeric configuration of the glycosyl phosphate present in the “isolated lipid A” fragment of the Bordetella pertussis endotoxin. Carbohydr Res 175:273–282CrossRefPubMedGoogle Scholar
  14. 14.
    Caroff M, Karibian D (2003) Structure of bacterial lipopolysaccharides. Carbohydr Res 338:2431–2447CrossRefPubMedGoogle Scholar
  15. 15.
    Caroff M, Karibian D, Cavaillon JM, Haeffner-Cavaillon N (2002) Structural and functional analyses of bacterial lipopolysaccharides. Microbes Infect 4:915–926CrossRefPubMedGoogle Scholar
  16. 16.
    Altman E, Brisson JR, Perry MB (1986) Structure of the O-chain of the lipopolysaccharide of Haemophilus pleuropneumoniae serotype 1. Biochem Cell Biol 64:1317–1325CrossRefPubMedGoogle Scholar
  17. 17.
    Caroff M (2004) Novel method for isolating endotoxins. PCT WO04062690, 2005Google Scholar
  18. 18.
    Michael FS, Brisson JR, Larocque S, Monteiro M, Li J, Jacques M, Perry MB, Cox AD (2004) Structural analysis of the lipopolysaccharide derived core oligosaccharides of Actinobacillus pleuropneumoniae serotypes 1, 2, 5a and the genome strain 5b. Carbohydr Res 339:1973–1984CrossRefPubMedGoogle Scholar
  19. 19.
    Lebbar S, Haeffner-Cavaillon N, Karibian D, Le Beyec Y, Caroff M (1995) 252Cf-plasma desorption mass spectrometry analysis of lipids A obtained by an elimination reaction under mild conditions. Rapid Commun Mass Spectrom 9:693–696CrossRefPubMedGoogle Scholar
  20. 20.
    Ramjeet M, Deslandes V, St Michael F, Cox AD, Kobisch M, Gottschalk M, Jacques M (2005) Truncation of the lipopolysaccharide outer core affects susceptibility to antimicrobial peptides and virulence of Actinobacillus pleuropneumoniae serotype 1. J Biol Chem 280:39104–39114CrossRefPubMedGoogle Scholar
  21. 21.
    Gamian A, Mieszała M, Lipiński T, Zielińska-Kuźniarz K, Gawlik-Jędrysiak M, Dzierzba K, Pietkiewicz J, Szeja W (2011) O-aminoacylation of bacterial glycoconjugates: from native structure to vaccine design. Curr Pharm Biotechnol 12:1781–1791CrossRefPubMedGoogle Scholar
  22. 22.
    Karibian D, Deprun C, Caroff M (1993) Comparison of lipids A of several Salmonella and Escherichia strains by 252Cf plasma desorption mass spectrometry. J Bacteriol 175:2988–2993CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Heine H, Rietschel ET, Ulmer AJ (2001) The biology of endotoxin. Mol Biotechnol 19:279–296CrossRefPubMedGoogle Scholar
  24. 24.
    Caroff M, Lebbar S, Szabó L (1987) Do endotoxins devoid of 3-deoxy-d-manno-2-octulosonic acid exist? Biochem Biophys Res Commun 143:845–847CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.LPS-BioSciences, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-SudUniversité Paris-SaclayOrsayFrance

Personalised recommendations