Biofluid Proteomics and Biomarkers in Traumatic Brain Injury

  • Safa Azar
  • Anwarul Hasan
  • Richard Younes
  • Farah Najdi
  • Lama Baki
  • Hussein Ghazale
  • Firas H. Kobeissy
  • Kazem Zibara
  • Stefania Mondello
Part of the Methods in Molecular Biology book series (MIMB, volume 1598)


Traumatic brain injury (TBI) is an injury to the brain caused by an external mechanical force, affecting millions of people worldwide. The disease course and prognosis are often unpredictable, and it can be challenging to determine an early diagnosis in case of mild injury as well as to accurately phenotype the injury. There is currently no cure for TBI—drugs having failed repeatedly in clinical trials—but an intense effort has been put to identify effective neuroprotective treatment. The detection of novel biomarkers, to understand more of the disease mechanism, facilitates early diagnosis, predicts disease progression, and develops molecularly targeted therapies that would be of high clinical interest. Over the last decade, there has been an increasing effort and initiative toward finding TBI-specific biomarker candidates. One promising strategy has been to use state-of-the-art neuroproteomics approaches to assess clinical biofluids and compare the cerebrospinal fluid (CSF) and blood proteome between TBI and control patients or between different subgroups of TBI. In this chapter, we summarize and discuss the status of biofluid proteomics in TBI, with a particular focus on the latest findings.

Key words

Proteomics Neuroproteomics Biomarkers TBI Brain injury Blood CSF Diagnosis Monitoring Outcome Clinical practice 


  1. 1.
    Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741PubMedCrossRefGoogle Scholar
  2. 2.
    Roozenbeek B, Maas AI, Menon DK (2013) Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol 9:231–236PubMedCrossRefGoogle Scholar
  3. 3.
    Finfer SR, Cohen J (2001) Severe traumatic brain injury. Resuscitation 48:77–90PubMedCrossRefGoogle Scholar
  4. 4.
    Kobeissy F, Mondello S, Tumer N, Toklu HZ, Whidden MA, Kirichenko N, Zhang Z, Prima V, Yassin W, Anagli J, Chandra N, Svetlov S, Wang KK (2013) Assessing neuro-systemic & behavioral components in the pathophysiology of blast-related brain injury. Front Neurol 4:186PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Wagner AK, Zitelli KT (2013) A Rehabilomics focused perspective on molecular mechanisms underlying neurological injury, complications, and recovery after severe TBI. Pathophysiology 20:39–48PubMedCrossRefGoogle Scholar
  6. 6.
    Maas AI, Murray GD, Roozenbeek B, Lingsma HF, Butcher I, McHugh GS, Weir J, Lu J, Steyerberg EW, International Mission on Prognosis Analysis of Clinical Trials in Traumatic Brain Injury Study, G (2013) Advancing care for traumatic brain injury: findings from the IMPACT studies and perspectives on future research. Lancet Neurol 12:1200–1210PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Wright DW, Yeatts SD, Silbergleit R, Palesch YY, Hertzberg VS, Frankel M, Goldstein FC, Caveney AF, Howlett-Smith H, Bengelink EM, Manley GT, Merck LH, Janis LS, Barsan WG, Investigators N (2014) Very early administration of progesterone for acute traumatic brain injury. N Engl J Med 371:2457–2466PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Mondello S, Muller U, Jeromin A, Streeter J, Hayes RL, Wang KK (2011) Blood-based diagnostics of traumatic brain injuries. Expert Rev Mol Diagn 11:65–78PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mondello S, Hayes RL (2015) Biomarkers. Handb Clin Neurol 127:245–265PubMedCrossRefGoogle Scholar
  10. 10.
    Guingab-Cagmat JD, Newsom K, Vakulenko A, Cagmat EB, Kobeissy FH, Zoltewicz S, Wang KK, Anagli J (2012) In vitro MS-based proteomic analysis and absolute quantification of neuronal-glial injury biomarkers in cell culture system. Electrophoresis 33:3786–3797PubMedCrossRefGoogle Scholar
  11. 11.
    Mann M, Kulak NA, Nagaraj N, Cox J (2013) The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 49:583–590PubMedCrossRefGoogle Scholar
  12. 12.
    Ottens AK, Kobeissy FH, Golden EC, Zhang Z, Haskins WE, Chen SS, Hayes RL, Wang KK, Denslow ND (2006) Neuroproteomics in neurotrauma. Mass Spectrom Rev 25:380–408PubMedCrossRefGoogle Scholar
  13. 13.
    Kobeissy FH, Ottens AK, Zhang Z, Liu MC, Denslow ND, Dave JR, Tortella FC, Hayes RL, Wang KK (2006) Novel differential neuroproteomics analysis of traumatic brain injury in rats. Mol Cell Proteomics 5:1887–1898PubMedCrossRefGoogle Scholar
  14. 14.
    Petzold A (2007) CSF biomarkers for improved prognostic accuracy in acute CNS disease. Neurol Res 29:691–708PubMedCrossRefGoogle Scholar
  15. 15.
    Zetterberg H, Smith DH, Blennow K (2013) Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol 9:201–210PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6:393–403PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Siman R, McIntosh TK, Soltesz KM, Chen Z, Neumar RW, Roberts VL (2004) Proteins released from degenerating neurons are surrogate markers for acute brain damage. Neurobiol Dis 16:311–320PubMedCrossRefGoogle Scholar
  18. 18.
    Evans RW (1998) Complications of lumbar puncture. Neurol Clin 16:83–105PubMedCrossRefGoogle Scholar
  19. 19.
    Elliott MH, Smith DS, Parker CE, Borchers C (2009) Current trends in quantitative proteomics. J Mass Spectrom 44:1637–1660PubMedGoogle Scholar
  20. 20.
    Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867PubMedCrossRefGoogle Scholar
  21. 21.
    Guerrier L, Lomas L, Boschetti E (2005) A simplified monobuffer multidimensional chromatography for high-throughput proteome fractionation. J Chromatogr A 1073:25–33PubMedCrossRefGoogle Scholar
  22. 22.
    Pan S, Zhu D, Quinn JF, Peskind ER, Montine TJ, Lin B, Goodlett DR, Taylor G, Eng J, Zhang J (2007) A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and tandem mass spectrometry. Proteomics 7:469–473PubMedCrossRefGoogle Scholar
  23. 23.
    Koutroukides TA, Guest PC, Leweke FM, Bailey DM, Rahmoune H, Bahn S, Martins-de-Souza D (2011) Characterization of the human serum depletome by label-free shotgun proteomics. J Sep Sci 34:1621–1626PubMedCrossRefGoogle Scholar
  24. 24.
    Haqqani AS, Hutchison JS, Ward R, Stanimirovic DB (2007) Biomarkers and diagnosis; protein biomarkers in serum of pediatric patients with severe traumatic brain injury identified by ICAT-LC-MS/MS. J Neurotrauma 24:54–74PubMedCrossRefGoogle Scholar
  25. 25.
    Lizhnyak PN, Yohannes H, Ottens AK (2015) Neuroproteome dynamics in modeled brain injury: a systems neurobiology perspective. In: Kobeissy FH (ed) Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. CRC Press/Taylor & Francis, Boca Raton, FL, pp 371–378Google Scholar
  26. 26.
    Wolahan SM, Hirt D, Glenn TC (2015) Translational metabolomics of head injury: exploring dysfunctional cerebral metabolism with ex vivo NMR spectroscopy-based metabolite quantification. In: Kobeissy FH (ed) Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. CRC Press/Taylor & Francis, Boca Raton, FL, pp 371–378Google Scholar
  27. 27.
    Marangos PJ, Schmechel DE (1987) Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci 10:269–295PubMedCrossRefGoogle Scholar
  28. 28.
    Vos PE, Lamers KJ, Hendriks JC, van Haaren M, Beems T, Zimmerman C, van Geel W, de Reus H, Biert J, Verbeek MM (2004) Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology 62:1303–1310PubMedCrossRefGoogle Scholar
  29. 29.
    Meric E, Gunduz A, Turedi S, Cakir E, Yandi M (2010) The prognostic value of neuron-specific enolase in head trauma patients. J Emerg Med 38:297–301PubMedCrossRefGoogle Scholar
  30. 30.
    Berger RP (2006) The use of serum biomarkers to predict outcome after traumatic brain injury in adults and children. J Head Trauma Rehabil 21:315–333PubMedCrossRefGoogle Scholar
  31. 31.
    Berger RP, Adelson PD, Richichi R, Kochanek PM (2006) Serum biomarkers after traumatic and hypoxemic brain injuries: insight into the biochemical response of the pediatric brain to inflicted brain injury. Dev Neurosci 28:327–335PubMedCrossRefGoogle Scholar
  32. 32.
    Zetterberg H, Tanriverdi F, Unluhizarci K, Selcuklu A, Kelestimur F, Blennow K (2009) Sustained release of neuron-specific enolase to serum in amateur boxers. Brain Inj 23:723–726PubMedCrossRefGoogle Scholar
  33. 33.
    Zetterberg H, Hietala MA, Jonsson M, Andreasen N, Styrud E, Karlsson I, Edman A, Popa C, Rasulzada A, Wahlund LO, Mehta PD, Rosengren L, Blennow K, Wallin A (2006) Neurochemical aftermath of amateur boxing. Arch Neurol 63:1277–1280PubMedCrossRefGoogle Scholar
  34. 34.
    Berger RP, Pierce MC, Wisniewski SR, Adelson PD, Clark RS, Ruppel RA, Kochanek PM (2002) Neuron-specific enolase and S100B in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatrics 109:E31PubMedCrossRefGoogle Scholar
  35. 35.
    Pelinka LE, Hertz H, Mauritz W, Harada N, Jafarmadar M, Albrecht M, Redl H, Bahrami S (2005) Nonspecific increase of systemic neuron-specific enolase after trauma: clinical and experimental findings. Shock 24:119–123PubMedCrossRefGoogle Scholar
  36. 36.
    Day IN, Thompson RJ (2010) UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Prog Neurobiol 90:327–362PubMedCrossRefGoogle Scholar
  37. 37.
    Gong B, Leznik E (2007) The role of ubiquitin C-terminal hydrolase L1 in neurodegenerative disorders. Drug News Perspect 20:365–370PubMedCrossRefGoogle Scholar
  38. 38.
    Tongaonkar P, Chen L, Lambertson D, Ko B, Madura K (2000) Evidence for an interaction between ubiquitin-conjugating enzymes and the 26S proteasome. Mol Cell Biol 20:4691–4698PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Liu MC, Akinyi L, Scharf D, Mo J, Larner SF, Muller U, Oli MW, Zheng W, Kobeissy F, Papa L, Lu XC, Dave JR, Tortella FC, Hayes RL, Wang KK (2010) Ubiquitin C-terminal hydrolase-L1 as a biomarker for ischemic and traumatic brain injury in rats. Eur J Neurosci 31:722–732PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Blyth BJ, Farahvar A, He H, Nayak A, Yang C, Shaw G, Bazarian JJ (2011) Elevated serum ubiquitin carboxy-terminal hydrolase L1 is associated with abnormal blood-brain barrier function after traumatic brain injury. J Neurotrauma 28:2453–2462PubMedCrossRefGoogle Scholar
  41. 41.
    Brophy GM, Mondello S, Papa L, Robicsek SA, Gabrielli A, Tepas J 3rd, Buki A, Robertson C, Tortella FC, Hayes RL, Wang KK (2011) Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. J Neurotrauma 28:861–870PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Czeiter E, Mondello S, Kovacs N, Sandor J, Gabrielli A, Schmid K, Tortella F, Wang KK, Hayes RL, Barzo P, Ezer E, Doczi T, Buki A (2012) Brain injury biomarkers may improve the predictive power of the IMPACT outcome calculator. J Neurotrauma 29:1770–1778PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mondello S, Linnet A, Buki A, Robicsek S, Gabrielli A, Tepas J, Papa L, Brophy GM, Tortella F, Hayes RL, Wang KK (2012) Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury. Neurosurgery 70:666–675PubMedPubMedCentralGoogle Scholar
  44. 44.
    Papa L, Akinyi L, Liu MC, Pineda JA, Tepas JJ 3rd, Oli MW, Zheng W, Robinson G, Robicsek SA, Gabrielli A, Heaton SC, Hannay HJ, Demery JA, Brophy GM, Layon J, Robertson CS, Hayes RL, Wang KK (2009) Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med 38:138–144CrossRefGoogle Scholar
  45. 45.
    Papa L, Lewis LM, Falk JL, Zhang Z, Silvestri S, Giordano P, Brophy GM, Demery JA, Dixit NK, Ferguson I, Liu MC, Mo J, Akinyi L, Schmid K, Mondello S, Robertson CS, Tortella FC, Hayes RL, Wang KK (2011) Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med 59:471–483PubMedCrossRefGoogle Scholar
  46. 46.
    Papa L, Lewis LM, Silvestri S, Falk JL, Giordano P, Brophy GM, Demery JA, Liu MC, Mo J, Akinyi L, Mondello S, Schmid K, Robertson CS, Tortella FC, Hayes RL, Wang KK (2012) Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J Trauma Acute Care Surg 72:1335–1344PubMedCrossRefGoogle Scholar
  47. 47.
    Mondello S, Kobeissy F, Vestri A, Hayes RL, Kochanek PM, Berger RP (2016) Serum concentrations of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein after pediatric traumatic brain injury. Sci Rep 6:28203PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Mondello S, Papa L, Buki A, Bullock MR, Czeiter E, Tortella FC, Wang KK, Hayes RL (2011) Neuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury: a case control study. Crit Care 15:R156PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Papa L, Ramia MM, Kelly JM, Burks SS, Pawlowicz A, Berger RP (2013) Systematic review of clinical research on biomarkers for pediatric traumatic brain injury. J Neurotrauma 30:324–338PubMedCrossRefGoogle Scholar
  50. 50.
    Welch RD, Ayaz SI, Lewis LM, Unden J, Chen JY, Mika VH, Saville B, Tyndall JA, Nash M, Buki A, Barzo P, Hack D, Tortella FC, Schmid K, Hayes RL, Vossough A, Sweriduk ST, Bazarian JJ (2016) Ability of serum glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1, and S100B to differentiate normal and abnormal head computed tomography findings in patients with suspected mild or moderate traumatic brain injury. J Neurotrauma 33:203–214PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Liu Q, Xie F, Siedlak SL, Nunomura A, Honda K, Moreira PI, Zhua X, Smith MA, Perry G (2004) Neurofilament proteins in neurodegenerative diseases. Cell Mol Life Sci 61:3057–3075PubMedCrossRefGoogle Scholar
  52. 52.
    Friede RL, Samorajski T (1970) Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat Rec 167:379–387PubMedCrossRefGoogle Scholar
  53. 53.
    Povlishock JT, Marmarou A, McIntosh T, Trojanowski JQ, Moroi J (1997) Impact acceleration injury in the rat: evidence for focal axolemmal change and related neurofilament sidearm alteration. J Neuropathol Exp Neurol 56:347–359PubMedCrossRefGoogle Scholar
  54. 54.
    Bacioglu M, Maia LF, Preische O, Schelle J, Apel A, Kaeser SA, Schweighauser M, Eninger T, Lambert M, Pilotto A, Shimshek DR, Neumann U, Kahle PJ, Staufenbiel M, Neumann M, Maetzler W, Kuhle J, Jucker M (2016) Neurofilament light chain in blood and CSF as marker of disease progression in mouse models and in neurodegenerative diseases. Neuron 91:494–496PubMedCrossRefGoogle Scholar
  55. 55.
    Ljungqvist JC, Zetterberg H, Mitsis M, Blennow K, Skoglund TS (2016) Serum neurofilament light protein as a marker for diffuse axonal injury—results from a case series study. J Neurotrauma. [Epub ahead of print]Google Scholar
  56. 56.
    Al Nimer F, Thelin E, Nystrom H, Dring AM, Svenningsson A, Piehl F, Nelson DW, Bellander BM (2015) Comparative assessment of the prognostic value of biomarkers in traumatic brain injury reveals an independent role for serum levels of neurofilament light. PLoS One 10:e0132177PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Anderson KJ, Scheff SW, Miller KM, Roberts KN, Gilmer LK, Yang C, Shaw G (2008) The phosphorylated axonal form of the neurofilament subunit NF-H (pNF-H) as a blood biomarker of traumatic brain injury. J Neurotrauma 25:1079–1085PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Shaw G, Yang C, Ellis R, Anderson K, Parker Mickle J, Scheff S, Pike B, Anderson DK, Howland DR (2005) Hyperphosphorylated neurofilament NF-H is a serum biomarker of axonal injury. Biochem Biophys Res Commun 336:1268–1277PubMedCrossRefGoogle Scholar
  59. 59.
    Gatson JW, Barillas J, Hynan LS, Diaz-Arrastia R, Wolf SE, Minei JP (2014) Detection of neurofilament-H in serum as a diagnostic tool to predict injury severity in patients who have suffered mild traumatic brain injury. J Neurosurg 121:1232–1238PubMedCrossRefGoogle Scholar
  60. 60.
    Rostami E, Davidsson J, Ng KC, Lu J, Gyorgy A, Walker J, Wingo D, Plantman S, Bellander BM, Agoston DV, Risling M (2012) A model for mild traumatic brain injury that induces limited transient memory impairment and increased levels of axon related serum biomarkers. Front Neurol 3:115PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Zurek J, Fedora M (2012) The usefulness of S100B, NSE, GFAP, NF-H, secretagogin and Hsp70 as a predictive biomarker of outcome in children with traumatic brain injury. Acta Neurochir 154:93–103. discussion 103PubMedCrossRefGoogle Scholar
  62. 62.
    Zurek J, Bartlova L, Fedora M (2011) Hyperphosphorylated neurofilament NF-H as a predictor of mortality after brain injury in children. Brain Inj 25:221–226PubMedCrossRefGoogle Scholar
  63. 63.
    Trojanowski JQ, Schuck T, Schmidt ML, Lee VM (1989) Distribution of tau proteins in the normal human central and peripheral nervous system. J Histochem Cytochem 37:209–215PubMedCrossRefGoogle Scholar
  64. 64.
    Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70:410–426PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ost M, Nylen K, Csajbok L, Ohrfelt AO, Tullberg M, Wikkelso C, Nellgard P, Rosengren L, Blennow K, Nellgard B (2006) Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology 67:1600–1604PubMedCrossRefGoogle Scholar
  66. 66.
    Franz G, Beer R, Kampfl A, Engelhardt K, Schmutzhard E, Ulmer H, Deisenhammer F (2003) Amyloid beta 1-42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 60:1457–1461PubMedCrossRefGoogle Scholar
  67. 67.
    Neselius S, Brisby H, Theodorsson A, Blennow K, Zetterberg H, Marcusson J (2012) CSF-biomarkers in Olympic boxing: diagnosis and effects of repetitive head trauma. PLoS One 7:e33606PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Bulut M, Koksal O, Dogan S, Bolca N, Ozguc H, Korfali E, Ilcol YO, Parklak M (2006) Tau protein as a serum marker of brain damage in mild traumatic brain injury: preliminary results. Adv Ther 23:12–22PubMedCrossRefGoogle Scholar
  69. 69.
    Neselius S, Zetterberg H, Blennow K, Randall J, Wilson D, Marcusson J, Brisby H (2013) Olympic boxing is associated with elevated levels of the neuronal protein tau in plasma. Brain Inj 27:425–433PubMedCrossRefGoogle Scholar
  70. 70.
    Dekosky ST, Blennow K, Ikonomovic MD, Gandy S (2013) Acute and chronic traumatic encephalopathies: pathogenesis and biomarkers. Nat Rev Neurol 9:192–200PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bazarian JJ, Zemlan FP, Mookerjee S, Stigbrand T (2006) Serum S-100B and cleaved-tau are poor predictors of long-term outcome after mild traumatic brain injury. Brain Inj 20:759–765PubMedCrossRefGoogle Scholar
  72. 72.
    Kavalci C, Pekdemir M, Durukan P, Ilhan N, Yildiz M, Serhatlioglu S, Seckin D (2007) The value of serum tau protein for the diagnosis of intracranial injury in minor head trauma. Am J Emerg Med 25:391–395PubMedCrossRefGoogle Scholar
  73. 73.
    Riederer BM, Zagon IS, Goodman SR (1986) Brain spectrin(240/235) and brain spectrin(240/235E): two distinct spectrin subtypes with different locations within mammalian neural cells. J Cell Biol 102:2088–2097PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang Z, Larner SF, Liu MC, Zheng W, Hayes RL, Wang KK (2009) Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis 14:1289–1298PubMedCrossRefGoogle Scholar
  75. 75.
    Mondello S, Robicsek SA, Gabrielli A, Brophy GM, Papa L, Tepas J, Robertson C, Buki A, Scharf D, Jixiang M, Akinyi L, Muller U, Wang KK, Hayes RL (2010) alphaII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J Neurotrauma 27:1203–1213PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Xiong H, Liang WL, Wu XR (2000) Pathophysiological alterations in cultured astrocytes exposed to hypoxia/reoxygenation. Sheng Li Ke Xue Jin Zhan 31:217–221PubMedGoogle Scholar
  77. 77.
    Goncalves CA, Leite MC, Nardin P (2008) Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem 41:755–763PubMedCrossRefGoogle Scholar
  78. 78.
    Donato R (2001) S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33:637–668PubMedCrossRefGoogle Scholar
  79. 79.
    Jonsson H, Johnsson P, Hoglund P, Alling C, Blomquist S (2000) Elimination of S100B and renal function after cardiac surgery. J Cardiothorac Vasc Anesth 14:698–701PubMedCrossRefGoogle Scholar
  80. 80.
    Raabe A, Menon DK, Gupta S, Czosnyka M, Pickard JD (1998) Jugular venous and arterial concentrations of serum S-100B protein in patients with severe head injury: a pilot study. J Neurol Neurosurg Psychiatry 65:930–932PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Romner B, Ingebrigtsen T, Kongstad P, Borgesen SE (2000) Traumatic brain damage: serum S-100 protein measurements related to neuroradiological findings. J Neurotrauma 17:641–647PubMedCrossRefGoogle Scholar
  82. 82.
    Woertgen C, Rothoerl RD, Metz C, Brawanski A (1999) Comparison of clinical, radiologic, and serum marker as prognostic factors after severe head injury. J Trauma 47:1126–1130PubMedCrossRefGoogle Scholar
  83. 83.
    Raabe A, Grolms C, Keller M, Dohnert J, Sorge O, Seifert V (1998) Correlation of computed tomography findings and serum brain damage markers following severe head injury. Acta Neurochir 140:787–791. discussion 791–782PubMedCrossRefGoogle Scholar
  84. 84.
    Raabe A, Grolms C, Sorge O, Zimmermann M, Seifert V (1999) Serum S-100B protein in severe head injury. Neurosurgery 45:477–483PubMedCrossRefGoogle Scholar
  85. 85.
    Rothoerl RD, Woertgen C, Holzschuh M, Metz C, Brawanski A (1998) S-100 serum levels after minor and major head injury. J Trauma 45:765–767PubMedCrossRefGoogle Scholar
  86. 86.
    Herrmann M, Curio N, Jost S, Wunderlich MT, Synowitz H, Wallesch CW (1999) Protein S-100B and neuron specific enolase as early neurobiochemical markers of the severity of traumatic brain injury. Restor Neurol Neurosci 14:109–114Google Scholar
  87. 87.
    McKeating EG, Andrews PJ, Mascia L (1998) Relationship of neuron specific enolase and protein S-100 concentrations in systemic and jugular venous serum to injury severity and outcome after traumatic brain injury. Acta Neurochir Suppl 71:117–119PubMedGoogle Scholar
  88. 88.
    Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H (2004) GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma 21:1553–1561PubMedCrossRefGoogle Scholar
  89. 89.
    Savola O, Pyhtinen J, Leino TK, Siitonen S, Niemela O, Hillbom M (2004) Effects of head and extracranial injuries on serum protein S100B levels in trauma patients. J Trauma 56:1229–1234. discussion 1234PubMedCrossRefGoogle Scholar
  90. 90.
    Vos PE, Jacobs B, Andriessen TM, Lamers KJ, Borm GF, Beems T, Edwards M, Rosmalen CF, Vissers JL (2010) GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology 75:1786–1793PubMedCrossRefGoogle Scholar
  91. 91.
    Woertgen C, Rothoerl RD, Holzschuh M, Metz C, Brawanski A (1997) Comparison of serial S-100 and NSE serum measurements after severe head injury. Acta Neurochir 139:1161–1164. discussion 1165PubMedCrossRefGoogle Scholar
  92. 92.
    Unden J, Astrand R, Waterloo K, Ingebrigtsen T, Bellner J, Reinstrup P, Andsberg G, Romner B (2007) Clinical significance of serum S100B levels in neurointensive care. Neurocrit Care 6:94–99PubMedCrossRefGoogle Scholar
  93. 93.
    Kovesdi E, Luckl J, Bukovics P, Farkas O, Pal J, Czeiter E, Szellar D, Doczi T, Komoly S, Buki A (2010) Update on protein biomarkers in traumatic brain injury with emphasis on clinical use in adults and pediatrics. Acta Neurochir 152:1–17PubMedCrossRefGoogle Scholar
  94. 94.
    Unden J, Romner B (2010) Can low serum levels of S100B predict normal CT findings after minor head injury in adults?: an evidence-based review and meta-analysis. J Head Trauma Rehabil 25:228–240PubMedCrossRefGoogle Scholar
  95. 95.
    Unden J, Ingebrigtsen T, Romner B, Scandinavian Neurotrauma C (2013) Scandinavian guidelines for initial management of minimal, mild and moderate head injuries in adults: an evidence and consensus-based update. BMC Med 11:50PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Mussack T, Kirchhoff C, Buhmann S, Biberthaler P, Ladurner R, Gippner-Steppert C, Mutschler W, Jochum M (2006) Significance of Elecsys S100 immunoassay for real-time assessment of traumatic brain damage in multiple trauma patients. Clin Chem Lab Med 44:1140–1145PubMedCrossRefGoogle Scholar
  97. 97.
    Romner B, Ingebrigtsen T (2001) High serum S100B levels for trauma patients without head injuries. Neurosurgery 49:1490. author reply 1492–1493CrossRefGoogle Scholar
  98. 98.
    Rothoerl RD, Woertgen C (2001) High serum S100B levels for trauma patients without head injuries. Neurosurgery 49:1490–1491. author reply 1492–1493PubMedCrossRefGoogle Scholar
  99. 99.
    Stalnacke BM, Ohlsson A, Tegner Y, Sojka P (2006) Serum concentrations of two biochemical markers of brain tissue damage S-100B and neurone specific enolase are increased in elite female soccer players after a competitive game. Br J Sports Med 40:313–316PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Anderson RE, Hansson LO, Nilsson O, Dijlai-Merzoug R, Settergren G (2001) High serum S100B levels for trauma patients without head injuries. Neurosurgery 48:1255–1258. discussion 1258–1260PubMedGoogle Scholar
  101. 101.
    Lange RT, Iverson GL, Brubacher JR (2012) Clinical utility of the protein S100B to evaluate traumatic brain injury in the presence of acute alcohol intoxication. J Head Trauma Rehabil 27:123–134PubMedCrossRefGoogle Scholar
  102. 102.
    Berger RP, Dulani T, Adelson PD, Leventhal JM, Richichi R, Kochanek PM (2006) Identification of inflicted traumatic brain injury in well-appearing infants using serum and cerebrospinal markers: a possible screening tool. Pediatrics 117:325–332PubMedCrossRefGoogle Scholar
  103. 103.
    Piazza O, Storti MP, Cotena S, Stoppa F, Perrotta D, Esposito G, Pirozzi N, Tufano R (2007) S100B is not a reliable prognostic index in paediatric TBI. Pediatr Neurosurg 43:258–264PubMedCrossRefGoogle Scholar
  104. 104.
    Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25:1439–1451PubMedCrossRefGoogle Scholar
  105. 105.
    Eng LF, Vanderhaeghen JJ, Bignami A, Gerstl B (1971) An acidic protein isolated from fibrous astrocytes. Brain Res 28:351–354PubMedCrossRefGoogle Scholar
  106. 106.
    Schiff L, Hadker N, Weiser S, Rausch C (2012) A literature review of the feasibility of glial fibrillary acidic protein as a biomarker for stroke and traumatic brain injury. Mol Diagn Ther 16:79–92PubMedCrossRefGoogle Scholar
  107. 107.
    Pelinka LE, Kroepfl A, Schmidhammer R, Krenn M, Buchinger W, Redl H, Raabe A (2004) Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. J Trauma 57:1006–1012PubMedCrossRefGoogle Scholar
  108. 108.
    Missler U, Wiesmann M, Wittmann G, Magerkurth O, Hagenstrom H (1999) Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem 45:138–141PubMedGoogle Scholar
  109. 109.
    van Geel WJ, de Reus HP, Nijzing H, Verbeek MM, Vos PE, Lamers KJ (2002) Measurement of glial fibrillary acidic protein in blood: an analytical method. Clin Chim Acta 326:151–154PubMedCrossRefGoogle Scholar
  110. 110.
    O'Callaghan JP, Sriram K (2005) Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity. Expert Opin Drug Saf 4:433–442PubMedCrossRefGoogle Scholar
  111. 111.
    Mondello S, Jeromin A, Buki A, Bullock R, Czeiter E, Kovacs N, Barzo P, Schmid K, Tortella F, Wang KK, Hayes RL (2011) Glial neuronal ratio: a novel index for differentiating injury type in patients with severe traumatic brain injury. J Neurotrauma 29:1096–1104CrossRefGoogle Scholar
  112. 112.
    Nylen K, Ost M, Csajbok LZ, Nilsson I, Blennow K, Nellgard B, Rosengren L (2006) Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J Neurol Sci 240:85–91PubMedCrossRefGoogle Scholar
  113. 113.
    Wiesmann M, Steinmeier E, Magerkurth O, Linn J, Gottmann D, Missler U (2010) Outcome prediction in traumatic brain injury: comparison of neurological status, CT findings, and blood levels of S100B and GFAP. Acta Neurol Scand 121:178–185PubMedCrossRefGoogle Scholar
  114. 114.
    Papa L, Lewis LM, Falk JL, Zhang Z, Silvestri S, Giordano P, Brophy GM, Demery JA, Dixit NK, Ferguson I, Liu MC, Mo J, Akinyi L, Schmid K, Mondello S, Robertson CS, Tortella FC, Hayes RL, Wang KK (2012) Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med 59:471–483PubMedCrossRefGoogle Scholar
  115. 115.
    Metting Z, Wilczak N, Rodiger LA, Schaaf JM, van der Naalt J (2012) GFAP and S100B in the acute phase of mild traumatic brain injury. Neurology 78:1428–1433PubMedCrossRefGoogle Scholar
  116. 116.
    Fraser DD, Close TE, Rose KL, Ward R, Mehl M, Farrell C, Lacroix J, Creery D, Kesselman M, Stanimirovic D, Hutchison JS, Canadian Critical Care Translational Biology G (2011) Severe traumatic brain injury in children elevates glial fibrillary acidic protein in cerebrospinal fluid and serum. Pediatr Crit Care Med 12:319–324PubMedCrossRefGoogle Scholar
  117. 117.
    Hayes RL, Mondello S, Wang K (2011) Glial fibrillary acidic protein: a promising biomarker in pediatric brain injury. Pediatr Crit Care Med 12:603–604PubMedCrossRefGoogle Scholar
  118. 118.
    Barbarese E, Barry C, Chou CH, Goldstein DJ, Nakos GA, Hyde-DeRuyscher R, Scheld K, Carson JH (1988) Expression and localization of myelin basic protein in oligodendrocytes and transfected fibroblasts. J Neurochem 51:1737–1745PubMedCrossRefGoogle Scholar
  119. 119.
    Armstrong RC, Mierzwa AJ, Sullivan GM, Sanchez MA (2016) Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury. Neuropharmacology 110(Pt B):654–659PubMedCrossRefGoogle Scholar
  120. 120.
    Palfreyman JW, Thomas DG, Ratcliffe JG (1978) Radioimmunoassay of human myelin basic protein in tissue extract, cerebrospinal fluid and serum and its clinical application to patients with head injury. Clin Chim Acta 82:259–270PubMedCrossRefGoogle Scholar
  121. 121.
    Thomas DG, Palfreyman JW, Ratcliffe JG (1978) Serum-myelin-basic-protein assay in diagnosis and prognosis of patients with head injury. Lancet 1:113–115PubMedCrossRefGoogle Scholar
  122. 122.
    Thomas DG, Rabow L, Teasdale G (1979) Serum myelin basic protein, clinical responsiveness, and outcome of severe head injury. Acta Neurochir Suppl 28:93–95PubMedGoogle Scholar
  123. 123.
    Yan EB, Satgunaseelan L, Paul E, Bye N, Nguyen P, Agyapomaa D, Kossmann T, Rosenfeld JV, Morganti-Kossmann MC (2014) Post-traumatic hypoxia is associated with prolonged cerebral cytokine production, higher serum biomarker levels, and poor outcome in patients with severe traumatic brain injury. J Neurotrauma 31:618–629PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Berger RP, Adelson PD, Pierce MC, Dulani T, Cassidy LD, Kochanek PM (2005) Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg 103:61–68PubMedGoogle Scholar
  125. 125.
    Dash PKZJ, Hergenroeder G, Moore AN (2010) Biomarkers for the diagnosis, prognosis and evaluation of treatment efficacy for traumatic brain injury. Neurotherapeutics 7(1):100–114PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Schmid KE, Tortella FC (2012) The diagnosis of traumatic brain injury on the battlefield. Front Neurol 3:90PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Woodcock T, Morganti-Kossmann MC (2013) The role of markers of inflammation in traumatic brain injury. Front Neurol 4:18PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Arand M, Melzner H, Kinzl L, Bruckner UB, Gebhard F (2001) Early inflammatory mediator response following isolated traumatic brain injury and other major trauma in humans. Langenbecks Arch Surg 386:241–248PubMedCrossRefGoogle Scholar
  129. 129.
    Arvin B, Neville LF, Barone FC, Feuerstein GZ (1996) The role of inflammation and cytokines in brain injury. Neurosci Biobehav Rev 20:445–452PubMedCrossRefGoogle Scholar
  130. 130.
    Kossmann T, Stahel PF, Lenzlinger PM, Redl H, Dubs RW, Trentz O, Schlag G, Morganti-Kossmann MC (1997) Interleukin-8 released into the cerebrospinal fluid after brain injury is associated with blood-brain barrier dysfunction and nerve growth factor production. J Cereb Blood Flow Metab 17:280–289PubMedCrossRefGoogle Scholar
  131. 131.
    Kossmann T, Hans VH, Imhof HG, Stocker R, Grob P, Trentz O, Morganti-Kossmann C (1995) Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock 4:311–317PubMedCrossRefGoogle Scholar
  132. 132.
    Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W (2013) Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136:28–42PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Giulian D, Lachman LB (1985) Interleukin-1 stimulation of astroglial proliferation after brain injury. Science 228:497–499PubMedCrossRefGoogle Scholar
  134. 134.
    Kossmann T, Hans V, Imhof HG, Trentz O, Morganti-Kossmann MC (1996) Interleukin-6 released in human cerebrospinal fluid following traumatic brain injury may trigger nerve growth factor production in astrocytes. Brain Res 713:143–152PubMedCrossRefGoogle Scholar
  135. 135.
    Tasci A, Okay O, Gezici AR, Ergun R, Ergungor F (2003) Prognostic value of interleukin-1 beta levels after acute brain injury. Neurol Res 25:871–874PubMedCrossRefGoogle Scholar
  136. 136.
    Hergenroeder GW, Redell JB, Moore AN, Dash PK (2008) Biomarkers in the clinical diagnosis and management of traumatic brain injury. Mol Diagn Ther 12:345–358PubMedCrossRefGoogle Scholar
  137. 137.
    Jeter CB, Hergenroeder GW, Hylin MJ, Redell JB, Moore AN, Dash PK (2013) Biomarkers for the diagnosis and prognosis of mild traumatic brain injury/concussion. J Neurotrauma 30(8):657–670PubMedCrossRefGoogle Scholar
  138. 138.
    Gopcevic A, Mazul-Sunko B, Marout J, Sekulic A, Antoljak N, Siranovic M, Ivanec Z, Margaritoni M, Bekavac-Beslin M, Zarkovic N (2007) Plasma interleukin-8 as a potential predictor of mortality in adult patients with severe traumatic brain injury. Tohoku J Exp Med 211:387–393PubMedCrossRefGoogle Scholar
  139. 139.
    Mussack T, Biberthaler P, Kanz KG, Wiedemann E, Gippner-Steppert C, Mutschler W, Jochum M (2002) Serum S-100B and interleukin-8 as predictive markers for comparative neurologic outcome analysis of patients after cardiac arrest and severe traumatic brain injury. Crit Care Med 30:2669–2674PubMedCrossRefGoogle Scholar
  140. 140.
    Kumar RG, Rubin JE, Berger RP, Kochanek PM, Wagner AK (2016) Principal components derived from CSF inflammatory profiles predict outcome in survivors after severe traumatic brain injury. Brain Behav Immun 53:183–193PubMedCrossRefGoogle Scholar
  141. 141.
    Csuka E, Morganti-Kossmann MC, Lenzlinger PM, Joller H, Trentz O, Kossmann T (1999) IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-alpha, TGF-beta1 and blood-brain barrier function. J Neuroimmunol 101:211–221PubMedCrossRefGoogle Scholar
  142. 142.
    Knoblach SM, Faden AI (1998) Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury. Exp Neurol 153:143–151PubMedCrossRefGoogle Scholar
  143. 143.
    Brenner T, Yamin A, Abramsky O, Gallily R (1993) Stimulation of tumor necrosis factor-alpha production by mycoplasmas and inhibition by dexamethasone in cultured astrocytes. Brain Res 608:273–279PubMedCrossRefGoogle Scholar
  144. 144.
    Sawada M, Kondo N, Suzumura A, Marunouchi T (1989) Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res 491:394–397PubMedCrossRefGoogle Scholar
  145. 145.
    Mier JW, Vachino G, van der Meer JW, Numerof RP, Adams S, Cannon JG, Bernheim HA, Atkins MB, Parkinson DR, Dinarello CA (1988) Induction of circulating tumor necrosis factor (TNF alpha) as the mechanism for the febrile response to interleukin-2 (IL-2) in cancer patients. J Clin Immunol 8:426–436PubMedCrossRefGoogle Scholar
  146. 146.
    Shohami E, Gallily R, Mechoulam R, Bass R, Ben-Hur T (1997) Cytokine production in the brain following closed head injury: dexanabinol (HU-211) is a novel TNF-alpha inhibitor and an effective neuroprotectant. J Neuroimmunol 72:169–177PubMedCrossRefGoogle Scholar
  147. 147.
    Goodman JC, Robertson CS, Grossman RG, Narayan RK (1990) Elevation of tumor necrosis factor in head injury. J Neuroimmunol 30:213–217PubMedCrossRefGoogle Scholar
  148. 148.
    Ross SA, Halliday MI, Campbell GC, Byrnes DP, Rowlands BJ (1994) The presence of tumour necrosis factor in CSF and plasma after severe head injury. Br J Neurosurg 8:419–425PubMedCrossRefGoogle Scholar
  149. 149.
    Stein DM, Kufera JA, Lindell A, Murdock KR, Menaker J, Bochicchio GV, Aarabi B, Scalea TM (2011) Association of CSF biomarkers and secondary insults following severe traumatic brain injury. Neurocrit Care 14:200–207PubMedCrossRefGoogle Scholar
  150. 150.
    Stein DM, Lindell A, Murdock KR, Kufera JA, Menaker J, Keledjian K, Bochicchio GV, Aarabi B, Scalea TM (2011) Relationship of serum and cerebrospinal fluid biomarkers with intracranial hypertension and cerebral hypoperfusion after severe traumatic brain injury. J Trauma 70:1096–1103PubMedCrossRefGoogle Scholar
  151. 151.
    Crespo AR, Da Rocha AB, Jotz GP, Schneider RF, Grivicich I, Pinheiro K, Zanoni C, Regner A (2007) Increased serum sFas and TNFalpha following isolated severe head injury in males. Brain Inj 21:441–447PubMedCrossRefGoogle Scholar
  152. 152.
    Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573PubMedCrossRefGoogle Scholar
  153. 153.
    Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S, Schafer P, Ding JY, Dornbos D 3rd, Li X, Guthikonda M, Rossi NF, Ding Y (2011) The role of hypoxia-inducible factor-1alpha, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg 114:92–101PubMedCrossRefGoogle Scholar
  154. 154.
    Wang X, Jung J, Asahi M, Chwang W, Russo L, Moskowitz MA, Dixon CE, Fini ME, Lo EH (2000) Effects of matrix metalloproteinase-9 gene knock-out on morphological and motor outcomes after traumatic brain injury. J Neurosci 20:7037–7042PubMedGoogle Scholar
  155. 155.
    Guilfoyle MR, Carpenter KL, Helmy A, Pickard JD, Menon DK, Hutchinson PJ (2015) Matrix metalloproteinase expression in contusional traumatic brain injury: a paired microdialysis study. J Neurotrauma 32:1553–1559PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Liu CL, Chen CC, Lee HC, Cho DY (2014) Matrix metalloproteinase-9 in the ventricular cerebrospinal fluid correlated with the prognosis of traumatic brain injury. Turk Neurosurg 24:363–368PubMedGoogle Scholar
  157. 157.
    Roberts DJ, Jenne CN, Leger C, Kramer AH, Gallagher CN, Todd S, Parney IF, Doig CJ, Yong VW, Kubes P, Zygun DA (2013) Association between the cerebral inflammatory and matrix metalloproteinase responses after severe traumatic brain injury in humans. J Neurotrauma 30:1727–1736PubMedCrossRefGoogle Scholar
  158. 158.
    Roberts DJ, Jenne CN, Leger C, Kramer AH, Gallagher CN, Todd S, Parney IF, Doig CJ, Yong VW, Kubes P, Zygun DA (2013) A prospective evaluation of the temporal matrix metalloproteinase response after severe traumatic brain injury in humans. J Neurotrauma 30:1717–1726PubMedCrossRefGoogle Scholar
  159. 159.
    Grossetete M, Phelps J, Arko L, Yonas H, Rosenberg GA (2009) Elevation of matrix metalloproteinases 3 and 9 in cerebrospinal fluid and blood in patients with severe traumatic brain injury. Neurosurgery 65:702–708PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Yang Y, Rosenberg GA (2011) Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 42:3323–3328PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Zhiyuan Q, Qingyong L, Shengming H, Hui M (2016) Protective effect of rhEPO on tight junctions of cerebral microvascular endothelial cells early following traumatic brain injury in rats. Brain Inj 30:462–467PubMedCrossRefGoogle Scholar
  162. 162.
    Cummins PM (2012) Occludin: one protein, many forms. Mol Cell Biol 32:242–250PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Inazawa J, Fujimoto K, Tsukita S (1997) Mammalian occludin in epithelial cells: its expression and subcellular distribution. Eur J Cell Biol 73:222–231PubMedGoogle Scholar
  164. 164.
    Shan R, Szmydynger-Chodobska J, Warren OU, Mohammad F, Zink BJ, Chodobski A (2016) A new panel of blood biomarkers for the diagnosis of mild traumatic brain injury/concussion in adults. J Neurotrauma 33:49–57PubMedCrossRefGoogle Scholar
  165. 165.
    Verweij BH, Muizelaar JP, Vinas FC, Peterson PL, Xiong Y, Lee CP (2000) Impaired cerebral mitochondrial function after traumatic brain injury in humans. J Neurosurg 93:815–820PubMedCrossRefGoogle Scholar
  166. 166.
    Sullivan PG, Keller JN, Bussen WL, Scheff SW (2002) Cytochrome c release and caspase activation after traumatic brain injury. Brain Res 949:88–96PubMedCrossRefGoogle Scholar
  167. 167.
    Darwish RS, Amiridze NS (2010) Detectable levels of cytochrome C and activated caspase-9 in cerebrospinal fluid after human traumatic brain injury. Neurocrit Care 12:337–341PubMedCrossRefGoogle Scholar
  168. 168.
    Lai Y, Stange C, Wisniewski SR, Adelson PD, Janesko-Feldman KL, Brown DS, Kochanek PM, Clark RS (2006) Mitochondrial heat shock protein 60 is increased in cerebrospinal fluid following pediatric traumatic brain injury. Dev Neurosci 28:336–341PubMedCrossRefGoogle Scholar
  169. 169.
    Corcoran TB, Mas E, Barden AE, Durand T, Galano JM, Roberts LJ, Phillips M, Ho KM, Mori TA (2011) Are isofurans and neuroprostanes increased after subarachnoid hemorrhage and traumatic brain injury? Antioxid Redox Signal 15:2663–2667PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Wang HC, Lin YJ, Shih FY, Chang HW, Su YJ, Cheng BC, Su CM, Tsai NW, Chang YT, Kwan AL, Lu CH (2016) The role of serial oxidative stress levels in acute traumatic brain injury and as predictors of outcome. World Neurosurg 87:463–470PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Safa Azar
    • 1
  • Anwarul Hasan
    • 2
    • 3
    • 4
    • 5
  • Richard Younes
    • 1
  • Farah Najdi
    • 1
  • Lama Baki
    • 1
  • Hussein Ghazale
    • 1
  • Firas H. Kobeissy
    • 6
    • 7
  • Kazem Zibara
    • 1
  • Stefania Mondello
    • 8
  1. 1.Department of Biochemistry and Molecular GeneticsAmerican University of BeirutBeirutLebanon
  2. 2.Department of Mechanical and Industrial EngineeringQatar UniversityDohaQatar
  3. 3.Biomedical Engineering and Department of Mechanical EngineeringAmerican University of BeirutBeirutLebanon
  4. 4.Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s HospitalHarvard Medical SchoolCambridgeUSA
  5. 5.Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA
  6. 6.Department of Biochemistry and Molecular Genetics, Faculty of MedicineAmerican University of BeirutBeirutLebanon
  7. 7.Department of Psychiatry, Center for Neuroproteomics and Biomarkers ResearchUniversity of FloridaGainesvilleUSA
  8. 8.Department of Biomedical, Odontoiatric and Morphological and Functional Imaging SciencesUniversity of Messina, A.O.U. “Policlinico G. Martino”MessinaItaly

Personalised recommendations