Advertisement

Method for Developing Optical Sensors Using a Synthetic Dye-Fluorescent Protein FRET Pair and Computational Modeling and Assessment

  • Joshua A. Mitchell
  • William H. Zhang
  • Michel K. Herde
  • Christian Henneberger
  • Harald Janovjak
  • Megan L. O’Mara
  • Colin J. JacksonEmail author
Protocol
  • 1.2k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1596)

Abstract

Biosensors that exploit Förster resonance energy transfer (FRET) can be used to visualize biological and physiological processes and are capable of providing detailed information in both spatial and temporal dimensions. In a FRET-based biosensor, substrate binding is associated with a change in the relative positions of two fluorophores, leading to a change in FRET efficiency that may be observed in the fluorescence spectrum. As a result, their design requires a ligand-binding protein that exhibits a conformational change upon binding. However, not all ligand-binding proteins produce responsive sensors upon conjugation to fluorescent proteins or dyes, and identifying the optimum locations for the fluorophores often involves labor-intensive iterative design or high-throughput screening. Combining the genetic fusion of a fluorescent protein to the ligand-binding protein with site-specific covalent attachment of a fluorescent dye can allow fine control over the positions of the two fluorophores, allowing the construction of very sensitive sensors. This relies upon the accurate prediction of the locations of the two fluorophores in bound and unbound states. In this chapter, we describe a method for computational identification of dye-attachment sites that allows the use of cysteine modification to attach synthetic dyes that can be paired with a fluorescent protein for the purposes of creating FRET sensors.

Key words

Synthetic dye Optical sensor Computational modeling Förster resonance energy transfer 

References

  1. 1.
    Scanziani M, Hausser M (2009) Electrophysiology in the age of light. Nature 461(7266):930–939CrossRefGoogle Scholar
  2. 2.
    Hou B-H, Takanaga H, Grossmann G, Chen L-Q, Qu X-Q, Jones AM, Lalonde S, Schweissgut O, Wiechert W, Frommer WB (2011) Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells. Nat Protoc 6(11):1818–1833. http://www.nature.com/nprot/journal/v6/n11/abs/nprot.2011.392.html#supplementary-information
  3. 3.
    Masharina A, Reymond L, Maurel D, Umezawa K, Johnsson K (2012) A Fluorescent sensor for GABA and synthetic GABAB receptor ligands. J Am Chem Soc 134(46):19026–19034. doi: 10.1021/ja306320s CrossRefGoogle Scholar
  4. 4.
    Namiki S, Sakamoto H, Iinuma S, Iino M, Hirose K (2007) Optical glutamate sensor for spatiotemporal analysis of synaptic transmission. Eur J Neurosci 25(8):2249–2259. doi: 10.1111/j.1460-9568.2007.05511.x CrossRefGoogle Scholar
  5. 5.
    Suzuki M, Tanaka S, Ito Y, Inoue M, Sakai T, Nishigaki K (2012) Simple and tunable Förster resonance energy transfer-based bioprobes for high-throughput monitoring of caspase-3 activation in living cells by using flow cytometry. Biochim Biophys Acta 1823(2):215–226. doi: 10.1016/j.bbamcr.2011.07.006 CrossRefGoogle Scholar
  6. 6.
    Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447CrossRefGoogle Scholar
  7. 7.
    Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink S-J (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4(5):819–834CrossRefGoogle Scholar
  8. 8.
    Suzuki T, Arai S, Takeuchi M, Sakurai C, Ebana H, Higashi T, Hashimoto H, Hatsuzawa K, Wada I (2012) Development of cysteine-free fluorescent proteins for the oxidative environment. PLoS One 7(5):e37551. doi: 10.1371/journal.pone.0037551 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Joshua A. Mitchell
    • 1
  • William H. Zhang
    • 1
  • Michel K. Herde
    • 3
  • Christian Henneberger
    • 3
    • 4
    • 5
  • Harald Janovjak
    • 2
  • Megan L. O’Mara
    • 1
  • Colin J. Jackson
    • 1
    Email author
  1. 1.Research School of ChemistryAustralian National UniversityCanberraAustralia
  2. 2.Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
  3. 3.Institute of Cellular NeurosciencesUniversity of Bonn Medical SchoolBonnGermany
  4. 4.German Center for Neurodegenerative Diseases (DZNE)BonnGermany
  5. 5.Institute of NeurologyUniversity College LondonLondonUK

Personalised recommendations