Advertisement

Peroxisomes pp 319-327 | Cite as

Generation of Peroxisome-Deficient Somatic Animal Cell Mutants

  • Kanji Okumoto
  • Yukio FujikiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1595)

Abstract

Cell mutants with a genetic defect affecting various cellular phenotypes are widely utilized as a powerful tool in genetic, biochemical, and cell biological research. More than a dozen complementation groups of animal somatic mutant cells defective in peroxisome biogenesis have been successfully isolated in Chinese hamster ovary (CHO) cells and used as a model system reflecting fatal human severe genetic disorders named peroxisome biogenesis disorders (PBD). Isolation and characterization of peroxisome-deficient CHO cell mutants has allowed the identification of PEX genes and the gene products peroxins, which directly leads to the accomplishment of isolation of pathogenic genes responsible for human PBDs, as well as elucidation of their functional roles in peroxisome biogenesis. Here, we describe the procedure to isolate peroxisome-deficient mammalian cell mutants from CHO cells, by making use of an effective, photo-sensitized selection method.

Key words

Peroxisome Peroxisome-deficient mutant cells CHO cells Peroxisome biogenesis disorders Zellweger syndrome PEX genes Peroxins Peroxisome targeting signals Protein import 

Notes

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research (24247038, 25112518, 25116717, 26116007, and 15K14511 to Y.F.; 26440032 to K.O.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and grants from the Takeda Science Foundation, the Naito Foundation, and the Japan Foundation for Applied Enzymology.

References

  1. 1.
    Fujiki Y (2000) Peroxisome biogenesis and peroxisome biogenesis disorders. FEBS Lett 476:42–46CrossRefPubMedGoogle Scholar
  2. 2.
    Weller S, Gould SJ, Valle D (2003) Peroxisome biogenesis disorders. Annu Rev Genomics Hum Genet 4:165–211CrossRefPubMedGoogle Scholar
  3. 3.
    Waterham HR, Ferdinandusse S, Wanders RJA (2016) Human disorders of peroxisome metabolism and biogenesis. Biochim Biophys Acta 1863:922–933CrossRefPubMedGoogle Scholar
  4. 4.
    Wanders RJA (2014) Metabolic functions of peroxisomes in health and disease. Biochimie 98:36–44CrossRefPubMedGoogle Scholar
  5. 5.
    van der Klei IJ, Veenhuis M (1996) Peroxisome biogenesis in the yeast Hansenula polymorpha: a structural and functional analysis. Ann N Y Acad Sci 804:47–59CrossRefPubMedGoogle Scholar
  6. 6.
    Kunau W-H (1998) Peroxisome biogenesis from yeast to man. Curr Opin Microbiol 1:232–237CrossRefPubMedGoogle Scholar
  7. 7.
    Tabak HF, Braakman I, Distel B (1999) Peroxisomes: simple in function but complex in maintenance. Trends Cell Biol 9:447–453CrossRefPubMedGoogle Scholar
  8. 8.
    Subramani S, Koller A, Snyder WB (2000) Import of peroxisomal matrix and membrane proteins. Annu Rev Biochem 69:399–418CrossRefPubMedGoogle Scholar
  9. 9.
    Titorenko VI, Rachubinski RA (2001) The life cycle of the peroxisome. Nat Rev Mol Cell Biol 2:357–368CrossRefPubMedGoogle Scholar
  10. 10.
    Hayashi M, Nishimura M (2006) Arabidopsis thaliana—a model organism to study plant peroxisomes. Biochim Biophys Acta Mol Cell Res 1763:1382–1391CrossRefGoogle Scholar
  11. 11.
    Fujiki Y (1997) Molecular defects in genetic diseases of peroxisomes. Biochim Biophys Acta 1361:235–250CrossRefPubMedGoogle Scholar
  12. 12.
    Fujiki Y, Okumoto K, Kinoshita N, Ghaedi K (2006) Lessons from peroxisome-deficient Chinese hamster ovary (CHO) cell mutants. Biochim Biophys Acta Mol Cell Res 1763:1374–1381CrossRefGoogle Scholar
  13. 13.
    Fujiki Y, Okumoto K, Mukai S, Honsho M, Tamura S (2014) Peroxisome biogenesis in mammalian cells. Front Physiol 5: Article 307Google Scholar
  14. 14.
    Fujiki Y, Matsuzono Y, Matsuzaki T, Fransen M (2006) Import of peroxisomal membrane proteins: the interplay of Pex3p- and Pex19p-mediated interactions. Biochim Biophys Acta Mol Cell Res 1763:1639–1646CrossRefGoogle Scholar
  15. 15.
    Zoeller RA, Raetz CR (1986) Isolation of animal cell mutants deficient in plasmalogen biosynthesis and peroxisome assembly. Proc Natl Acad Sci U S A 83:5170–5174CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zoeller RA, Allen L-AH, Santos MJ, Lazarow PB, Hashimoto T, Tartakoff AM, Raetz CRH (1989) Chinese hamster ovary cell mutants defective in peroxisome biogenesis. Comparison to Zellweger syndrome. J Biol Chem 264:21872–21878PubMedGoogle Scholar
  17. 17.
    Tsukamoto T, Yokota S, Fujiki Y (1990) Isolation and characterization of Chinese hamster ovary cell mutants defective in assembly of peroxisomes. J Cell Biol 110:651–660CrossRefPubMedGoogle Scholar
  18. 18.
    Morand OH, Allen L-AH, Zoeller RA, Raetz CRH (1990) A rapid selection for animal cell mutants with defective peroxisomes. Biochim Biophys Acta 1034:132–141CrossRefPubMedGoogle Scholar
  19. 19.
    Tsukamoto T, Bogaki A, Okumoto K, Tateishi K, Fujiki Y, Shimozawa N, Suzuki Y, Kondo N, Osumi T (1997) Isolation of a new peroxisome deficient CHO cell mutant defective in peroxisome targeting signal-1 receptor. Biochem Biophys Res Commun 230:402–406CrossRefPubMedGoogle Scholar
  20. 20.
    Shimozawa N, Tsukamoto T, Suzuki Y, Orii T, Fujiki Y (1992) Animal cell mutants represent two complementation groups of peroxisome-defective Zellweger syndrome. J Clin Invest 90:1864–1870CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ghaedi K, Itagaki A, Toyama R, Tamura S, Matsumura T, Kawai A, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y (1999) Newly identified Chinese hamster ovary cell mutants defective in peroxisome assembly represent complementation group A of human peroxisome biogenesis disorders and one novel group in mammals. Exp Cell Res 248:482–488CrossRefPubMedGoogle Scholar
  22. 22.
    Natsuyama R, Okumoto K, Fujiki Y (2013) Pex5p stabilizes Pex14p: a study using a newly isolated pex5 CHO cell mutant, ZPEG101. Biochem J 449:195–207CrossRefPubMedGoogle Scholar
  23. 23.
    Ghaedi K, Fujiki Y (2008) Isolation and characterization of novel phenotype CHO cell mutants defective in peroxisome assembly, using ICR191 as a potent mutagenic agent. Cell Biochem Funct 26:684–691CrossRefPubMedGoogle Scholar
  24. 24.
    Noguchi M, Okumoto K, Fujiki Y (2013) System to quantify the import of peroxisomal matrix proteins by fluorescence intensity. Genes Cells 18:476–492CrossRefPubMedGoogle Scholar
  25. 25.
    Ghaedi K, Kawai A, Okumoto K, Tamura S, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y (1999) Isolation and characterization of novel peroxisome biogenesis-defective Chinese hamster ovary cell mutants using green fluorescent protein. Exp Cell Res 248:489–497CrossRefPubMedGoogle Scholar
  26. 26.
    Otera H, Harano T, Honsho M, Ghaedi K, Mukai S, Tanaka A, Kawai A, Shimizu N, Fujiki Y (2000) The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates Pex7p-PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J Biol Chem 275:21703–21714CrossRefPubMedGoogle Scholar
  27. 27.
    Matsumura T, Otera H, Fujiki Y (2000) Disruption of interaction of the longer isoform of Pex5p, Pex5pL, with Pex7p abolishes the PTS2 protein import in mammals: study with a novel PEX5-impaired Chinese hamster ovary cell mutant. J Biol Chem 275:21715–21721CrossRefPubMedGoogle Scholar
  28. 28.
    Wyatt MD, Pittman LD (2006) Methylating agents and DNA repair responses: methylated bases and sources of strand breaks. Chem Res Toxicol 19:1580–1594CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chen W, Eshleman JRM, Aminoshariae R, Ma A, Veloso N, Markowitz SDW, Sedwick D, Veigl ML (2000) Cytotoxicity and mutagenicity of frameshift-inducing agent ICR191 in mismatch repair-deficient colon cancer cells. J Natl Cancer Inst 92:480–485CrossRefPubMedGoogle Scholar
  30. 30.
    Honsho M, Yagita Y, Kinoshita N, Fujiki Y (2008) Isolation and characterization of mutant animal cell line defective in alkyl-dihydroxyacetonephosphate synthase: localization and transport of plasmalogens to post-Golgi compartments. Biochim Biophys Acta 1783:1857–1865CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Biology, Faculty of SciencesKyushu UniversityFukuokaJapan
  2. 2.Medical Institute of BioregulationKyushu UniversityFukuokaJapan

Personalised recommendations