Advertisement

Peroxisomes pp 257-265 | Cite as

Flow Cytometric Analysis of the Expression Pattern of Peroxisomal Proteins, Abcd1, Abcd2, and Abcd3 in BV-2 Murine Microglial Cells

  • Meryam Debbabi
  • Thomas Nury
  • Imen Helali
  • El Mostafa Karym
  • Flore Geillon
  • Catherine Gondcaille
  • Doriane Trompier
  • Amina Najid
  • Sébastien Terreau
  • Maryem Bezine
  • Amira Zarrouk
  • Anne Vejux
  • Pierre Andreoletti
  • Mustapha Cherkaoui-Malki
  • Stéphane Savary
  • Gérard Lizard
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1595)

Abstract

Microglial cells play important roles in neurodegenerative diseases including peroxisomal leukodystrophies. The BV-2 murine immortalized cells are widely used in the context of neurodegenerative researches. It is therefore important to establish the expression pattern of peroxisomal proteins by flow cytometry in these cells. So, the expression pattern of various peroxisomal transporters (Abcd1, Abcd2, Abcd3) contributing to peroxisomal β-oxidation was evaluated on BV-2 cells by flow cytometry and complementary methods (fluorescence microscopy, and RT-qPCR). By flow cytometry a strong expression of peroxisomal proteins (Abcd1, Abcd2, Abcd3) was observed. These data were in agreement with those obtained by fluorescence microscopy (presence of numerous fluorescent dots in the cytoplasm characteristic of a peroxisomal staining pattern) and RT-qPCR (high levels of Abcd1, Abcd2, and Abcd3 mRNAs). Thus, the peroxisomal proteins (Abcd1, Abcd2, Abcd3) are expressed in BV-2 cells, and can be analyzed by flow cytometry.

Key words

BV-2 microglial cells Peroxisomal ABC transporters Flow cytometric analysis 

Notes

Acknowledgment

A part of this work was presented as an oral presentation entitled “Peroxisomal and Oxidative Burst Defects” by Amira Zarrouk, Meriem Yousfi, Hayet Iddir, Thomas Nury, Catherine Gondcaille, Gérard Lizard at the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)/European Society for Clinical Cell Analysis (ESCCA) Beckman Coulter, Flow Cytometry Course in St Etienne, France (April 11-13, 2013). This work was supported by grants from the INSERM, the Université de Bourgogne, the European Leucodystrophies Association (ELA; project number: 2010-03014), the Conseil Régional de Bourgogne, the Action Intégrée of the Comité Mixte Inter-universitaire Franco-Marocain (CMIFM, AIMA/14/310, EGIDE) from the PHC Volubilis/Toubkal program, Ministère des Affaires Etrangères, the Ministère de l’Enseignement et de la Recherche, and the Projet Sectoriel CNRST.

References

  1. 1.
    Islinger M, Grille S, Fahimi HD, Schrader M (2012) The peroxisome: an update on mysteries. Histochem Cell Biol 137:547–574CrossRefPubMedGoogle Scholar
  2. 2.
    Schrader M, Thiemann M, Fahimi HD (2003) Peroxisomal motility and interaction with microtubules. Microsc Res Tech 61:171–178CrossRefPubMedGoogle Scholar
  3. 3.
    Rucktäschel R, Girzalsky W, Erdmann R (2011) Protein import machineries of peroxisomes. Biochim Biophys Acta 1808:892–900CrossRefPubMedGoogle Scholar
  4. 4.
    Trompier D, Savary S (2013) X-adrenoleukodystrophy. Morgan & Claypool Life Science, San Rafael, CA, pp 1–134Google Scholar
  5. 5.
    Kemp S, Theodoulou FL, Wanders RJ (2011) Mammalian peroxisomal ABC transporters: from endogenous substrates to pathology and clinical significance. Br J Pharmacol 164:1753–1766CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wanders RJ, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332CrossRefPubMedGoogle Scholar
  7. 7.
    Wanders RJ (2014) Metabolic functions of peroxisomes in health and disease. Biochimie 98:36–44CrossRefPubMedGoogle Scholar
  8. 8.
    Fransen M, Nordgren M, Wang B, Apanasets O (2012) Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta 1822:1363–1373CrossRefPubMedGoogle Scholar
  9. 9.
    Kassmann CM, Lappe-Siefke C, Baes M, Brugger B, Mildner A, Werner HB, Natt O, Michaelis T, Prinz M, Frahm J, Nave KA (2007) Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet 39:969–976CrossRefPubMedGoogle Scholar
  10. 10.
    Baes M, Van Veldhoven PP (2012) Mouse models for peroxisome biogenesis defects and β-oxidation enzyme deficiencies. Biochim Biophys Acta 1822:1489–1500CrossRefPubMedGoogle Scholar
  11. 11.
    Bottelbergs A, Verheijden S, Van Veldhoven PP, Just W, Devos R, Baes M (2012) Peroxisome deficiency but not the defect in ether lipid synthesis causes activation of the innate immune system and axonal loss in the central nervous system. J Neuroinflammation 9:61CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ferrer I, Aubourg P, Pujol A (2010) General aspects and neuropathology of X-linked adrenoleukodystrophy. Brain Pathol 20:817–830CrossRefPubMedGoogle Scholar
  13. 13.
    Weber FD, Wiesinger C, Forss-Petter S, Regelsberger G, Einwich A, Weber WH, Köhler W, Stockinger H, Berger J (2014) X-linked adrenoleukodystrophy: very long-chain fatty acid metabolism is severely impaired in monocytes but not in lymphocytes. Hum Mol Genet 23:2542–2550CrossRefPubMedGoogle Scholar
  14. 14.
    Blaylock RL (2013) Immunology primer for neurosurgeons and neurologists part 2: innate brain immunity. Surg Neurol Int 4:118CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bocchini V, Mazzolla R, Barluzzi R, Blasi E, Sick P, Kettenmann H (1992) An immortalized cell line expresses properties of activated microglial cells. J Neurosci Res 31:616–621CrossRefPubMedGoogle Scholar
  16. 16.
    Henn A, Lund S, Hedtjärn M, Schrattenholz A, Pörzgen P, Leist M (2009) The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 26:83–94CrossRefPubMedGoogle Scholar
  17. 17.
    Fouquet F, Zhou JM, Ralston E, Murray K, Troalen F, Magal E, Robain O, Dubois-Dalcq M, Aubourg P (1997) Expression of the adrenoleukodystrophy protein in the human and mouse central nervous system. Neurobiol Dis 3:271–285CrossRefPubMedGoogle Scholar
  18. 18.
    Liu J, Sabeva NS, Bhatnagar S, Li XA, Pujol A, Graf GA (2010) ABCD2 is abundant in adipose tissue and opposes the accumulation of dietary erucic acid (C22:1) in fat. J Lipid Res 51:162–168CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Baarine M, Ragot K, Genin EC, El Hajj H, Trompier D, Andreoletti P, Ghandour MS, Menetrier F, Cherkaoui-Malki M, Savary S, Lizard G (2009) Peroxisomal and mitochondrial status of two murine oligodendrocytic cell lines (158N, 158JP): potential models for the study of peroxisomal disorders associated with dysmyelination processes. J Neurochem 111:119–131CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Meryam Debbabi
    • 1
    • 2
  • Thomas Nury
    • 1
  • Imen Helali
    • 1
    • 3
  • El Mostafa Karym
    • 1
    • 4
  • Flore Geillon
    • 1
  • Catherine Gondcaille
    • 1
  • Doriane Trompier
    • 1
  • Amina Najid
    • 1
  • Sébastien Terreau
    • 1
  • Maryem Bezine
    • 1
    • 5
  • Amira Zarrouk
    • 1
    • 2
  • Anne Vejux
    • 1
  • Pierre Andreoletti
    • 1
  • Mustapha Cherkaoui-Malki
    • 1
  • Stéphane Savary
    • 1
  • Gérard Lizard
    • 1
  1. 1.Laboratoire ‘Biochimie du peroxysome, inflammation et métabolisme lipidique’, EA7270/INSERM, Faculté des Sciences GabrielUniversité de Bourgogne Franche ComtéDijonFrance
  2. 2.Faculté de Médecine, Laboratoire de Nutrition—Aliments Fonctionnels et Santé Vasculaire (LR12ES05), Monastir & Faculté de MédecineUniversité de MonastirSousseTunisia
  3. 3.Faculté de Pharmacie, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives (LR99ES27)Université de MonastirMonastirTunisia
  4. 4.Laboratoire de Biochimie et Neuroscience, Faculté de Sciences et TechniquesUniversité Hassan 1erSettatMorocco
  5. 5.Laboratoire de Venins et Biomolécules Thérapeutiques (LVMT)Université de Tunis El Manar-Institut PasteurTunisTunisia

Personalised recommendations