Skip to main content

Labeling of Peroxisomes for Live Cell Imaging in the Filamentous Fungus Ustilago maydis

  • Protocol
  • First Online:
Peroxisomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1595))

Abstract

The basidiomycete fungus Ustilago maydis has emerged as a powerful model organism to study fundamental biological processes. U. maydis shares many important features with human cells but provides the technical advantages of yeast. Recently, U. maydis has also been used to investigate fundamental processes in peroxisome biology. Here, we present an efficient yeast recombination-based cloning method to construct and express fluorescent fusion proteins (or conditional mutant protein alleles) which target peroxisomes in the fungus U. maydis. In vivo analysis is pivotal for understanding the underlying mechanisms of organelle motility. We focus on the in vivo labeling of peroxisomes in U. maydis and present approaches to analyze peroxisomal motility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brefeld O (1883) Untersuchungen aus dem Gesamtgebiet der Mykologie. Heft 5:67–75

    Google Scholar 

  2. Christensen JJ (1963) Corn smut induced by Ustilago maydis. Am Phytopathol Soc Monogr 2:41, paper no. 1119

    Google Scholar 

  3. Banuett F (1995) Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu Rev Genet 29:179e208

    Article  Google Scholar 

  4. Kahmann R, Steinberg G, Basse C, Feldbrügge M, Kämper J (2000) Ustilago maydis, the causative agent of corn smut disease. In: Kronstad JW (ed) Fungal pathology. Kluwer Academic, Dordrecht, pp 347–371

    Chapter  Google Scholar 

  5. Bölker M (2001) Ustilago maydis - a valuable model system for the study of fungal dimorphism and virulence. Microbiology 147:1395e1401

    Article  Google Scholar 

  6. Feldbrügge M, Kämper J, Steinberg G, Kahmann R (2004) Regulation of mating and pathogenic development in Ustilago maydis. Curr Opin Microbiol 7:666–672

    Article  PubMed  Google Scholar 

  7. Steinberg G, Pérez-Martín J (2008) Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol 18:61–67

    Article  CAS  PubMed  Google Scholar 

  8. Münsterkötter M, Steinberg G (2007) The fungus Ustilago maydis and humans share disease-related proteins that are not found in Saccharomyces cerevisiae. BMC Genomics 8:473

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kojic M, Kostrub CF, Buchman AR, Holloman WK (2002) BRCA2 homolog required for proficiency in DNA repair, recombination, and genome stability in Ustilago maydis. Mol Cell 10:683–691

    Article  CAS  PubMed  Google Scholar 

  10. Fink G, Steinberg G (2006) Dynein-dependent motility of microtubules and nucleation sites supports polarization of the tubulin array in the fungus Ustilago maydis. Mol Biol Cell 17:3242–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wedlich-Söldner R, Straube A, Friedrich MW, Steinberg G (2002) A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis. EMBO J 21:2946–2957

    Article  PubMed  PubMed Central  Google Scholar 

  12. Castillo-Lluva S, Alvarez-Tabarés I, Weber I, Steinberg G, Pérez-Martín J (2007) Sustained cell polarity and virulence in the phytopathogenic fungus Ustilago maydis depends on an essential cyclin-dependent kinase from the Cdk5/Pho85 family. J Cell Sci 120:1584–1595

    Article  CAS  PubMed  Google Scholar 

  13. Straube A, Weber I, Steinberg G (2005) A novel mechanism of nuclear envelope break-down in a fungus: nuclear migration strips off the envelope. EMBO J 24:1674–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klose J, Kronstad JW (2006) The multifunctional beta-oxidation enzyme is required for full symptom development by the biotrophic maize pathogen Ustilago maydis. Eukaryot Cell 5:2047–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kretschmer M, Klose J, Kronstad JW (2012) Defects in mitochondrial and peroxisomal beta-oxidation influence virulence in the maize pathogen Ustilago maydis. Eukaryot Cell 11:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Camões F, Islinger M, Guimarães SC, Kilaru S, Schuster M, Godinho LF, Steinberg G, Schrader M (2015) New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes. Biochim Biophys Acta 1853:111–125

    Article  PubMed  Google Scholar 

  17. Kämper J et al (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101

    Article  PubMed  Google Scholar 

  18. Guimarães SC, Schuster M, Bielska E, Dagdas G, Kilaru S, Meadows BR, Schrader M, Steinberg G (2015) Peroxisomes, lipid droplets, and endoplasmic reticulum “hitchhike” on motile early endosomes. J Cell Biol 211:945–954

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lin C, Schuster M, Guimarães SC, Ashwin P, Schrader M, Metz J, Hacker C, Gurr SJ, Steinberg G (2016) Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells. Nat Commun 7:11814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Freitag J, Ast J, Bölker M (2012) Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature 485:522–525

    Article  CAS  PubMed  Google Scholar 

  21. Stiebler AC, Freitag J, Schink KO, Stehlik T, Tillmann BA, Ast J, Bölker M (2014) Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in Fungi and animals. PLoS Genet 10:e1004685

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schueren F, Lingner T, George R, Hofhuis J, Dickel C, Gärtner J, Thoms S (2014) Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. Elife 3:e03640

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schrader M, Thiemann M, Fahimi HD (2003) Peroxisomal motility and interaction with microtubules. Microsc Res Tech 61:171–178

    Article  CAS  PubMed  Google Scholar 

  24. Egan MJ, McClintock MA, Reck-Peterson SL (2012) Microtubule-based transport in filamentous fungi. Curr Opin Microbiol 15:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schrader M, Godinho LF, Costello J, Islinger M (2015) The different facets of organelle interplay—an overview of organelle interactions. Front Cell Dev Biol 3:56

    Article  PubMed  PubMed Central  Google Scholar 

  26. Neuhaus A, Eggeling C, Erdmann R, Schliebs W (2016) Why do peroxisomes associate with the cytoskeleton? Biochim Biophys Acta 1863:1019–1026

    Article  CAS  PubMed  Google Scholar 

  27. Tang X, Halleck MS, Schlegel RA, Williamson P (1996) A subfamily of P-type ATPases with aminophospholipid transporting activity. Science 272:1495–1497

    Article  CAS  PubMed  Google Scholar 

  28. Holliday R (1975) Further evidence for an inducible recombination repair system in Ustilago maydis. Mutat Res 29:149–153

    Article  CAS  PubMed  Google Scholar 

  29. Kilaru S, Steinberg G (2015) Yeast recombination-based cloning as an efficient way of constructing vectors for Zymoseptoria tritici. Fungal Genet Biol 79:76–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boyle JS, Lew AM (1995) An inexpensive alternative to glassmilk for DNA purification. Trends Genet 11:8

    Article  CAS  PubMed  Google Scholar 

  31. Raymond CK, Pownder TA, Sexson SL (1999) General method for plasmid construction using homologous recombination. Biotechniques 26:134–141

    CAS  PubMed  Google Scholar 

  32. Gietz RD, Schiestl RH (2007) Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:35–37

    Article  CAS  PubMed  Google Scholar 

  33. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272

    Article  CAS  PubMed  Google Scholar 

  34. Schulz B, Banuett F, Dahl M, Schlesinger R, Schafer W, Martin T, Herskowitz I, Kahmann R (1990) The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60:295–306

    Article  CAS  PubMed  Google Scholar 

  35. Steinberg G, Schuster M (2011) The dynamic fungal cell. Fungal Biol Rev 25:14–37

    Article  Google Scholar 

  36. Schuster M, Kilaru S, Guo M, Sommerauer M, Lin C, Steinberg G (2015) Red fluorescent proteins for imaging Zymoseptoria tritici during invasion of wheat. Fungal Genet Biol 79:132–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kilaru S, Schuster M, Studholme D, Soanes D, Lin C, Talbot NJ, Steinberg G (2015) A codon-optimized green fluorescent protein for live cell imaging in Zymoseptoria tritici. Fungal Genet Biol 79:125–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank G. Steinberg for his support and the opportunity to publish this method chapter. This work was supported by the Portuguese Foundation for Science and Technology and FEDER/COMPETE (SFRH/BD/73532/2010 to S.C. Guimarães) and CRUP/Treaty of Windsor (ACÇÕES INTEGRADAS 2009, B-33/09 to G. Steinberg and M. Schrader). M. Schrader acknowledges support from the Marie Curie Initial Training Network (ITN) action (FP7-2012-PERFUME-316723).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schuster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Guimarães, S.C., Kilaru, S., Schrader, M., Schuster, M. (2017). Labeling of Peroxisomes for Live Cell Imaging in the Filamentous Fungus Ustilago maydis . In: Schrader, M. (eds) Peroxisomes. Methods in Molecular Biology, vol 1595. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6937-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6937-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6935-7

  • Online ISBN: 978-1-4939-6937-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics